Naar dynamisch en gestructureerd vraaggestuurd leren met digitaal mindmappen

Effecten op motivatie, dieper leren en leerstofbeheersing

Onderzoeksverslag voor 'Kennis van Waarde maken'

Harry Stokhof
Dominique Sluijsmans
Haske van Vlokhoven
Martijn Peters

Januari 2012
Voorwoord

Recent onderzoek van Kennisnet toont aan dat het gebruik van computers in de klas nog steeds niet voldoende is. Ongeveer 25 procent van alle docenten in het primair onderwijs, het voortgezet onderwijs en het middelbaar beroepsonderwijs gebruikt geen computers tijdens de les. Het gebruik neemt weliswaar gestaag toe, maar veel te langzaam (Kennisnet, 2010). Het hier gepresenteerde onderzoek - gefinancierd door Kennisnet - wil een bijdrage leveren aan de vraag hoe computers een efficiënte en effectieve bijdrage kan leveren voor leerlingen én leerkrachten. Gebruik van computers wordt in dit onderzoek vertaald naar het gebruik van digitale mindmapping met daarvoor geschikte software. Onderzocht is hoe digitale mindmapping (DMM) het leren van leerlingen kan stimuleren en het handelingsrepertoire van leerkrachten kan verhogen. De integrale wijze van (samen)werken met leerlingen staat hierbij centraal.

Dit onderzoek levert een bijdrage aan het onderzoeksprogramma ‘Kennis van waarde maken’. De resultaten bieden de scholen concrete handvatten voor het effectief en efficiënt inzetten van DMM in vraaggestuurd leren. De opbrengst van DMM voor leerlingen is dat zij hun leerproces op een motiverende en eigentijdse manier kunnen vormgeven, samen met medeleerlingen en de leerkracht. Leerkrachten wordt door het werken met DMM niet alleen handvatten geboden om het begeleidingsproces in te richten, zij ontdekken tevens de waarde van DMM voor het ontwerp van lessen en het in kaart brengen van de leerstofbeheersing op leerling- en leerkrachtniveau.

Wij wensen u veel lees- en kijkplezier!

Harry Stokhof

Nijmegen, januari 2012
Samenvatting

Mindmapping is een manier om relaties tussen begrippen grafisch zichtbaar te maken. De maker van een mindmap tekent vanuit een centraal begrip vertakkingen waarop sleutelbegrippen staan. Ondergeschikte begrippen krijgen een plaats op de subtakken. Kleuren accentueren de samenhang tussen de begrippen op takken. Afbeeldingen verhelderen de betekenis van de begrippen. Mindmaps kunnen op papier of op de computer worden gemaakt. In het laatste geval spreken we van digitaal mindmappen (DMM).

De waarde van digitaal mindmappen voor leren en motivatie van leerlingen en leerkrachten is nog onbekend. Dit onderzoek is gericht op het vaststellen van deze waarde door te kiezen voor een onderzoekscopzet waarbij effecten van papieren mindmapping worden vergeleken met effecten van DMM binnen een vraaggestuurd leerarrangement. De verwachting is dat DMM door flexibiliteit in gebruik, positieve effecten heeft op leerlingen in termen van motivatie, dieper leren en leerstofbeheersing. Voor leerkrachten verwachten we dat digitale mindmapping handvatten biedt voor het ontwerpen, begeleiden en evalueren van vraaggestuurd leren. In dit onderzoek hebben 12 leerkrachten samen met 271 leerlingen, verdeeld over 2 basisscholen, gewerkt met vier vraaggestuurde leerarrangementen. De scholen werkten in de leerarrangementen zowel met DMM als met mindmappen op papier.

Uit de analyse blijkt dat het gebruik van DMM in vraaggestuurd leren de intrinsieke motivatie van leerlingen verhoogt en de gebruikte leerstrategieën verdiept in vergelijking met papieren mindmapping. De effecten van DDM op leerstofbeheersing zijn over het algemeen positief, maar de vergelijking met mindmappen op papier is minder eenduidig. DMM levert volgens leerkrachten een waardevolle bijdrage aan het ontwerpen, begeleiden en evalueren van vraaggestuurd leren. DMM versterkt het overzicht van leerkrachten op de leerstof en is een krachtig instrument voor het begeleiden en evalueren van het leerproces van leerlingen. DMM is volgens de leerkrachten efficiënter dan mindmappen op papier. Samenvattend draagt DMM bij aan de betekenisvolle inzet van ICT in een sociaal constructivistische leeromgeving, waarbij zowel het leerrendement als het leerplezier wordt verhoogd. Vervolgonderzoek is wenselijk om de inzet van DMM in vraaggestuurd leren te optimaliseren.
Inhoudsopgave

Voorwoord ... 1
Samenvatting ... 2
1 Mindmappen in vraaggestuurd leren ... 4
 1.1 Vraaggestuurd leren in het basisonderwijs .. 4
 1.2 De functies van mindmapping .. 5
 1.3 Digitaal mindmappen (DMM) .. 5
 1.4 De praktijkvraag .. 5
 1.5 Werken met mindmaps in de vraaggestuurde leerarrangementen 6
2 Het onderzoek .. 9
 2.1 Onderzoeksvragen .. 9
 2.2 Leerling variabelen ... 12
 2.3 Leerkracht variabelen .. 12
 2.4 Efficiëntie en educatieve waarde ... 13
3 Onderzoeksmethode .. 14
 3.1 De onderzoeksoptzet .. 14
 3.2 Populatie .. 14
 3.3 Onderzoeksprocedure .. 15
 3.4 Onderzoeksinstrumenten .. 15
 3.4.1 Intrinsieke motivatie leerlingen .. 15
 3.4.2 Diepere leerstrategie leerlingen .. 15
 3.4.3 Leerstofbeheersing: kwaliteit mindmaps ... 16
 3.4.4 Motivatie, ontwerpcompetentie, uitvoeringscompetentie en evaluatiecompetentie 17
 3.4.5 Efficiëntie ... 18
 3.4.6 Educatieve waarde: de Power Indicator ... 18
 3.4.7 Samenvattend overzicht instrumenten ... 19
4 Onderzoeksresultaten leerlingen .. 19
 4.1 Verwachtingen .. 19
 4.2 Gebruikte data en data-analyse .. 19
 4.3 Effecten op motivatie ... 20
 4.4 Effecten op diepere leerstrategie ... 21
 4.5 Effecten op leerstofbeheersing ... 21
 4.5.1 Effecten op leesbaarheid van de mindmap ... 21
 4.5.2 Effecten op aanmaak van takken en concepten ... 23
 4.5.3 Effecten op relevantie, de basiskwaliteit, de toegevoegde en hiërarchische kwaliteit ... 24
 4.5.4 Effecten op herhaling van concepten ... 27
 4.5.5 Effecten op gebruik van afbeeldingen ... 27
 4.6 Samenvatting resultaten leerlingen .. 29
5 Onderzoeksresultaten leerkrachten ... 29
 5.1 Verwachtingen .. 29
 5.2 Gebruikte data en data-analyse .. 29
 5.3 Motivatie ... 30
 5.4 Ontwerpcompetentie ... 31
 5.5 Uitvoeringscompetentie ... 32
 5.6 Evaluatiecompetentie .. 35
 5.7 Waaraan geven leerkrachten de voorkeur? .. 36
 6 De efficiëntie en educatieve waarde ... 37
 6.1 Efficiëntie van DMM en papieren mindmapping ... 37
 6.2 Educatieve waarde van DMM en papieren mindmapping: de Power Indicator 38
6 Conclusies en discussie ... 39
 7.1 Conclusies .. 39
 7.2 Onderzoeksmatige reflectie .. 40
 7.3 Praktische implicaties ... 40
 7.4 Vervolgonderzoek ... 41
7 Literatuur .. 42
 8 Bijlage 1: De onderzoeksprocedure ... 44
 8 Bijlage 2: De leerkrachtvragenlijst ... 46
 8 Bijlage 3: Verschillen tussen de twee condities (digitaal versus papier) 49
 8 Bijlage 4: De leerlingvragenlijst ... 51
 8 Bijlage 5: Tabellen F-toetsen, significanties en effecten per variabele 53
1 Mindmappen in vraaggestuurd leren

Onderzoek van Stokhof en de Vries (2009) wijst uit dat mindmaps krachtige middelen zijn om vraaggestuurd onderwijs te ondersteunen. Zij constateren echter ook dat de constructie van een mindmap op papier beperkingen heeft. ICT kan in belangrijke mate bijdragen om het gebruik van mindmaps dynamischer te maken en de functionaliteiten van mindmaps te versterken. Tot op heden weten we weinig over de waarde van digitaal mindmap (hierna aangeduid als DMM) voor leren en motivatie van leerlingen en leerkrachten. Dit onderzoek is gericht op het vaststellen van deze waarde door te kiezen voor een onderzoekspunt waarbij effecten van papieren mindmapping worden vergeleken met effecten van DMM binnen een vraaggestuurd leerarrangement. De verwachting is dat digitaal mindmapping door flexibiliteit in gebruik positieve effecten heeft op leerlingen in termen van motivatie, dieper leren en leerstofbeheersing en tevens leerkrachten handvatten biedt voor het ontwerpen, begeleiden en evalueren van vraaggestuurd leren. In dit hoofdstuk worden achtereenvolgens de achtergronden van vraaggestuurd leren (1.1) en mindmapping (1.2) uiteengezet. Op basis hiervan wordt de specifieke waarde van DMM toegelicht (1.3). De concrete praktijkvraag die de aanleiding vormt voor dit onderzoek wordt gedefinieerd in 1.4. Het hoofdstuk besluit met de beschrijving van de rol van mindmaps in de ontwikkelde vraaggestuurde leerarrangementen (1.5).

1.1 Vraaggestuurd leren in het basisonderwijs

In het basisonderwijs vindt op een toenemend aantal scholen een verschuiving plaats naar aanbod van leerstof in thematische contexten en omgevingen, waarin onderzoekend leren leidend is. In deze leeromgevingen gaan leerlingen binnen een begrens groter geheel aan de slag met een onderwerp en verkennen dat onderwerp (deels) aan de hand van eigen leervragen of leerdoelen. Hierbij zijn leerlingen op een vraaggestuurde wijze in toenemende mate bezig met het zoeken, verwerken en presenteren van informatie met ICT. De basisscholen die veelvuldig op deze manier gaan werken laten, met name voor de wereldoriëntatievakken, de eerder in gebruik genomen methodes voor aardrijkskunde, geschiedenis en natuuronderwijs steeds meer los (De Vries, 2007).

Een eerste drijfveer om vraaggestuurd leren een belangrijke plaats in het curriculum te geven is de zoektocht van basisscholen om hun onderwijs aan te laten sluiten bij de maatschappelijke ontwikkelingen. Naarmate de maatschappij zich verder evolueert tot een netwerk en informatie samenleving, constateren scholen dat alleen kennisoverdracht onvoldoende is leerlingen voor te bereiden op hun toekomstige rol in de samenleving. Om nieuwe generaties op de netwerk en informatie maatschappij voor te bereiden, zullen scholen leerlingen moeten leren hoe zij zelf relevante informatie kunnen vinden, hoe zij de waarde ervan kunnen bepalen en hoe zij hieruit nieuwe kennis kunnen construeren: het ‘leren leren’. Wanneer leerlingen zelf hun eigen kennis construeren leren zij niet alleen vaardigheden: ze bouwen ook aan de kennisbasis, die nodig is om nieuwe informatie een betekenisvolle plaats te kunnen geven in hun denken. Vraaggestuurd en onderzoekend leren worden in de onderwijswetenschappen beschouwd als effectieve strategieën om de vaardigheden voor kennisconstructie bij leerlingen te ontwikkelen.

Een tweede reden waarom scholen in het basisonderwijs kiezen voor vraaggestuurd leren is de toenemende aandacht voor intrinsieke motivatie. Leerlingen raken sterker gemotiveerd om zich te verdiepen in de onderwijsactiviteiten wanneer hun natuurlijke nieuwsgierigheid wordt geactiveerd. Wanneer de eigen interesses van de leerlingen als uitgangspunt worden genomen, worden verbindingen gelegd tussen de lesstof en de leef- belevingswereld van leerlingen. Dit helpt leerlingen om nieuwe kennis en inzichten te koppelen aan hun bestaande kennisbasis (Oosterheert, 2011). Basisscholen in het basisonderwijs beseffen in toenemende mate welke mogelijkheden onderzoekend leren biedt om de leerlingen te motiveren en betekenisvol onderwijs te bieden.
1.2 De functies van mindmapping

Stokhof & de Vries (2009) hebben een aanpak ontwikkeld waarbij leerkrachten met behulp van mindmapping leerstofborging kunnen realiseren in vraaggestuurd leren. Daarbij worden vier functies van mindmappen onderscheiden:

- **Inhoudelijke functie**: het maken van een mindmap geeft steeds de actuele stand weer van de kennis en inzichten die door de leerlingen zijn vergaard. Door het in relatie brengen van kernbegrippen rondom een bepaald thema en het activeren van de voorkennis hierbij, worden leerlingen aangespoord om logisch na te denken en moeten zij een beroep doen op hun denkvermogen; de individuele leervragen die de leerlingen formuleren en uitwerken kunnen zichtbaar aan elkaar gerelateerd worden;
- **Leerstrategische functie**: het individueel en gezamenlijk maken van mindmaps werkt als een instrument voor het monitoren van het leerproces en een stimulans voor dieper leren;
- **Motiverende functie**: het dynamisch werken aan de mindmap verhoogt de betrokkenheid van leerlingen bij hun eigen leerproces. Dit gevoel van controle, autonomie in combinatie met het leren met anderen werkt motivatie verhogend. Individuele leervragen dragen bij aan collectieve kennis zichtbaar in de mindmap wat het gezamenlijke eigenaarschap van de kennisconstructie binnen de klas bevorderd;
- **Sociale/communicatieve functie**: de mindmap als product vormt het middel tot kennisconstructie en kennisdeling tussen leerlingen onderling en tussen leerkracht en leerlingen.

1.3 Digitaal mindmappen (DMM)

De constructie van een mindmap op papier heeft echter ook beperkingen (Stokhof & De Vries, 2009). Leerlingen blijken het lastig te vinden papieren mindmaps tewijzigen. Dit komt onder andere door de eigenschappen van het materiaal. Als de leerling een structurele wijziging wil aanbrengen, betekent dit in veel gevallen dat de mindmap opnieuw gemaakt moet worden. Er zijn sterke aanwijzingen dat leerlingen nog wel hun papieren mindmap aanvullen met nieuwe concepten maar geen structurele wijzigingen meer willen aanbrengen, omdat dit (te) veel werk met zich meebrengt. Zo ontstaat het risico dat mindmapping op papier voor de leerlingen een statisch karakter krijgt, in plaats van dat zij als een dynamisch instrument uitdaagt tot het herschikken van conceptuele structuren (Stokhof & de Vries, 2009). ICT kan in belangrijke mate bijdragen om het gebruik van mindmaps dynamischer te maken en kan zo de vier functionaliteiten van mindmappen versterken die de cognitieve ontwikkeling en de leerstofbeheersing van de leerlingen ondersteunen. Door het zogenaamde digitale mindmappen (DMM) hebben leerkrachten en leerlingen de mogelijkheid om de mindmap niet alleen uit te breiden en te verrijken met nieuwe concepten en voorbeelden, maar ook tijdens het leerproces nieuwe relaties aan te brengen en aan de hand van voortschrijdend inzicht begrippen te herschikken, (Philip, 2007; Tergan, 2005). In dit onderzoek wordt verwacht dat DMM op zowel leerling- als leerkrachtniveau een krachtige dynamische functie kan vervullen.

1.4 De praktijkvraag

De basisscholen De Esdoorn (Elst) en basisschool Laurentiushof (Vierlingsbeek) werken al enige tijd met thematische leerarrangementen voor wereldoriëntatie. Op beide scholen leeft de vraag hoe leerlingen meer vanuit eigen leervragen kunnen gaan leren, terwijl de leerkrachten tegelijkertijd voldoende mate van leerstofbeheersing bij de leerlingen willen borgen. Deze scholen zoeken naar de balans tussen enerzijds de wens om betekenisvol onderwijs te bieden dat is afgestemd op de leervragen en leerwensen van individuele leerlingen en anderzijds de noodzaak om het juiste leerstofaanbod te verzorgen en de ontwikkeling van de leerlingen goed te volgen en te sturen. Daarbij zijn deze scholen zoekende naar effectieve en efficiënte wijzen van ICT-gebruik om leerkrachten te ondersteunen in het ontwerp van vraaggestuurd leren en het borgen van de leerstof.

Deze vragen passen ook in een breder perspectief. In de onderwijspraktijk zien we dat veel leerkrachten nog weinig ervaring hebben met het zelf ontwerpen van een (meer) vraaggestuurd
leeromgeving. Zij zijn gewend de leeromgeving in te richten zoals de methode dat aangeeft en ervaren daarin de zekerheid dat zij aan de kennisdoelstellingen van het curriculum voldoen. De toetsing van leerlingresultaten is dan gericht op het controleren van vooraf bepaalde leerstofdoelen, waarin weinig tot geen ruimte is voor (spontane) leerwensen en leervragen van leerlingen. Omdat de methodes uitgaan van een gemiddelde leerling is het risico dat individuele leerlingen verdwijnen in een beoordeling gericht op de gemiddelde norm en niet op hun unieke leerwensen.

Wanneer scholen de leerstofgrenzen van de methodes los laten in thematisch projectonderwijs, komt er ruimte voor individuele leerwensen en ontstaat er meer variatie en differentiatie in het leerstofaanbod. Deze rijke leeromgevingen komen echter onder druk te staan wanneer leerkrachten de leeropbrengsten van leerlingen willen meten, volgen en verantwoorden. Leerkrachten beschikken dan namelijk niet meer over een uniform toetsbouwwerk dat hen overzicht geeft over de vorderingen van de leerlingen. Soms nemen scholen de beslissing om toch weer (deels) methodisch te gaan werken om verantwoording te kunnen afleggen over leerrendementen. Leerkrachten geven aan dat deze gang van zaken onbevredigend is. Wanneer een leerkracht heeft ervaren hoe motiverend en tot dieper leren leidend onderzoekende leeromgevingen kunnen zijn, ontstaat de wens om een structurele combinatie te vinden tussen beoogde leerstofborging en de vrijheid om eigen leervragen te onderzoeken (De Vries, 2007, Stokhof & De Vries 2009).

Betrokkenheid van leerkrachten is een sleutelfactor in onderwijsvernieuwingen. Hoewel dit ontwerponderzoek antwoorden probeert te geven op vragen uit de praktijk, is dit nog geen garantie dat de beoogde onderwijsinnovatie succesvol zal zijn. Bij dit ontwerponderzoek worden daarom de adviezen van de commissie Dijsselbloem als uitgangspunt genomen. Enerzijds hebben leerkrachten ondersteuning nodig bij het leren ontwerpen en implementeren van vraaggestuurde leeromgevingen. Anderzijds is het belangrijk dat deze onderwijsvernieuwingen niet van bovenaf worden opgelegd, maar dat leerkrachten als partner worden betrokken bij de ontwikkeling (Dijsselbloem, 2008). Leerkrachten hebben daarom een centrale rol gespeeld in het ontwerp, in de uitvoering en in de evaluatie van de leerarrangementen tijdens dit onderzoek. In de volgende paragraaf wordt de opzet van de leerarrangementen geschetst, waarin mindmapping een mogelijke oplossing biedt tussen leerstofborging en vrijheid om te leren vanuit eigen leervragen.

1.5 Werken met mindmaps in de vraaggestuurde leerarrangementen

Voor dit onderzoek is een systematiek ontwikkeld voor leerkrachten om vraaggestuurde leerarrangementen te ontwerpen, te begeleiden en te evalueren met behulp van mindmaps. Op de twee participerende scholen zijn uiteindelijk vier leerarrangementen rondom wereldoriëntatiethema’s volgens de systematiek ontwikkeld. Deze arrangementen verschillen in onderwerp en tijdsduur, maar kwamen overeen qua voorbereiding en uitvoering. Mindmaps hebben 3 verschillende functies gehad in de leerarrangementen: als ontwerpinstrument, als didactisch instrument en als toetsinstrument. Hieronder is beschreven hoe er met mindmaps is gewerkt.

Mindmap als ontwerpinstrument
De leerkrachten hebben de vraaggestuurde leerarrangementen in de twee workshops ontworpen. De mindmap fungeerde in deze voorbereidingsfase als ontwerpinstrument. Na de keuze van het onderwerp in de eerste workshop, kregen de leerkrachten de opdracht om te onderzoeken welke basisbegrippen zij belangrijk vonden voor het leerarrangement. Deze begrippen hebben zij vastgelegd in een persoonlijke mindmap. In de tweede workshop zijn deze individuele mindmaps vergeleken, besproken en uiteindelijk omgevormd tot een gezamenlijke leerkrachtmindmap van het leerarrangement (een voorbeeld is opgenomen als Figuur 1). De hierin opgenomen basisbegrippen en hun onderlinge relaties zijn gehanteerd als de minimumdoelen voor de leerstof van het leerarrangement. Door deze werkwijze is de digitale mindmap gebruikt om impliciete doelen voor alle betrokken leerkrachten expliciet te maken. De klassenmindmap diende vervolgens als leidraad in de uitvoering van het leerarrangement.
Figuur 1. De leerkracht mindmap

Mindmap als didactisch instrument
In de uitvoeringsfase van het leerarrangement is de mindmap ingezet als didactisch instrument. Eerst werd de voorkennis van de leerlingen zichtbaar gemaakt in een 'klassenmindmap'. Vervolgens werd deze klassenmindmap een dynamisch leerplatform voor het formuleren van leervragen het uitwisselen van informatie en het terugkoppelen van verworven kennis.

De eigen kennisbasis van de leerlingen was het vertrekpunt in de uitvoering van de ontworpen leerarrangementen. In de eerste onderwijsactiviteit waren leerlingen eerst enthousiast gemaakt door een presentatie over het onderwerp door de leerkracht. Vervolgens werd hen gevraagd gedurende 10 minuten individueel begrippen op te schrijven die zij associeerden met het onderwerp (zodat alle leerlingen de tijd namen om hun voorkennis te activeren). Vervolgens werd deze voorkennis tijdens een klassengesprek op het digibord geïnventariseerd en vastgelegd als een ongestructureerd woordveld.

De begrippen die opgenomen waren in dit woordveld, werden in een tweede bijeenkomst geclusterd en waar nodig aangevuld. Tenslotte werd op basis van het woordcluster de klassenmindmap gevormd (zie Figuur 2). De dialoog tussen leerkracht en de leerlingen stond in deze twee onderwijsactiviteiten centraal. Hoewel de leerkracht de leerkrachtmindmap niet expliciet presenteerde, gaf deze de leerkracht wel het overzicht om de inbreng van de leerlingen te structureren en waar nodig aan te vullen. De leerkracht bewaakte dat de begrippen en relaties van basisleerstof werden opgenomen in een 'klassenmindmap', maar liet expliciet ruimte voor inbreng van de leerlingen.

Figuur 2. Van woordveld naar klassenmindmap

De collectieve kennis van de leerlingen, vastgelegd in de klassenmindmap was het startpunt van het vraaggestuurd leren. Leraren stimuleerden de leerlingen om vanuit de klassenmindmap eigen

Nieuwe kennis en inzichten die de leervragen opleverden, werden toegevoegd aan de klassenmindmap. Daarnaast konden leerkrachten via lessen nieuwe input geven aan de klassenmindmap. Gedurende het leerarrangement ontwikkelde de klassenmindmap, zoals zichtbaar in Figuur 3: klassenmindmap 1 is het startpunt, mindmap 2 geeft de stand van zaken weer na de eerste week, klassenmindmap 10 is de ontwikkelde kennis aan het einde van het leerarrangement. Een mindmap wordt op deze manier een platform waar de leerlingen (en leerkrachten) informatie kunnen uitwisselen in een betekenisvolle context en hun individuele en collectieve kennis kunnen uitbreiden. Door deze onderwijsactiviteiten leren leerlingen nieuwe concepten, ontdekken zij verbanden tussen concepten en integreren zij deze kennis en inzichten in hun cognitieve structuur (Novak, 1991; Novak, 2002; Novak & Cañas, 2008).

Mindmap als toetsinstrument

Na afloop van het leerarrangement hebben de leerkrachten mindmaps gebruikt om de opbrengst van het leerarrangement en de leerstofbeheersing van de leerlingen te evalueren. Alle leerlingen hebben op 3 momenten een individuele mindmap gemaakt als toets. De eerste toetsmindmap (voormeting) werd bij de aanvang van het arrangement gemaakt. De tweede toetsmindmap (nameting) maakten de leerlingen direct na afloop van het leerarrangement. De leerlingen maakten tenslotte 5 weken na het arrangement een toetsmindmap als retentiemeting. De leerkrachten hebben deze mindmaps beoordeeld en onderling vergeleken om de vorderingen van de leerlingen en de opbrengst van het leerarrangement vast te stellen. In Figuur 4 staan voorbeelden van deze toetsmindmaps van een leerling uit groep 8 in de DMM conditie. De voormeting is gemaakt op papier, de na- en retentiemeting zijn gemaakt in DMM software door de leerlingen in de DMM conditie.
2 Het onderzoek

De verwachting dat DMM een krachtig hulpmiddel zou kunnen zijn om leerstofdoelen te kunnen borgen in vraaggestuurd leren, ligt ten grondslag aan dit onderzoek. Dit hoofdstuk beschrijft het conceptuele design van het onderzoek. Na de formulering van de centrale onderzoeksvragen worden per deelvraag verwachtingen geformuleerd over de waarde van DMM. Vervolgens worden de leerling variabelen, de leerkracht variabelen en de variabelen ‘efficiëntie’ en ‘educatieve waarde’ verder toegelicht.

2.1 Onderzoeksvragen

Op basis van de theoretische achtergrond, de uitkomsten van eerder onderzoek en de gestelde praktijkvraag staat in voorgesteld onderzoek de volgende onderzoeksvraag centraal:

Wat is de waarde van digitale mindmapping (DMM) in vraaggestuurd leren voor leerlingen en leerkrachten?

De vier deelvragen zijn:

a. Wat zijn de effecten van DMM op de intrinsieke motivatie, de leerstrategie en leerstofbeheersing van leerlingen in vergelijking met papieren mindmapping?

b. Op welke wijze ondersteunt DMM de leerkracht bij het ontwerpen, begeleiden en evalueren van vraaggestuurd leren?

c. Hoe efficiënt is DMM?

d. Wat is de educatieve waarde van DMM?

De verwachtingen bij deelvraag (a) zijn de volgende:

1. **DMM bevordert de motivatie van leerlingen**: DMM is gebruiksvriendelijk en automatiseert diverse handelingen die bij het maken van een mindmap tijdrovend kunnen zijn: het tekenen van takken, het schrijven van leesbare teksten, de takken op de juiste plaats zetten. Daarnaast kan een digitale mindmap eenvoudig worden aangepast naar nieuwe inzichten. De verwachting is dat leerlingen hierdoor meer gemotiveerd zijn om te werken met DMM dan met mindmappen op papier. De term ‘motivatie’ is in dit onderzoek geoperationaliseerd als: ervaren competentie; interesse; ervaren keuze; druk en inzet (Deci & Ryan, 1985; Ryan & Deci, 2000);

2. **DMM bevordert het toepassen van diepere leerstrategieën**: er is sprake van diepere leerstrategieën als een leerling zich actief inzet om kennis te verwerven, zelf betekenis wil geven aan deze nieuwe kennis en deze nieuwe kennis in andere situaties kan toepassen. DMM automatiserend deels de vorming van een mindmap, waardoor leerlingen zich meer kunnen richten op de inhoudelijke keuzes als zij een mindmap maken. Daarnaast bevordert het nadenken over het ordenen van begrippen in een mindmap het analytisch, synthetisch denken, zeker als een mindmap niet als statisch instrument wordt gebruikt (Buzan & Buzan, 2007; Stokhof & de Vries, 2009). DMM biedt mogelijkheden om begrippen niet alleen te rangschikken maar ook te herschikken. Wanneer leerlingen door DMM zich meer kunnen richten op leerinhoudelijke keuzes, begrippen eenvoudig kunnen herschikken is de verwachting dat leerlingen meer diepere leerstrategieën zullen toepassen;

3. **DMM bevordert het maken van goed leesbare mindmaps**: bij het maken een mindmap is het van belang dat de begrippen leesbaar geschreven zijn, dat begrippen bovenop takken zijn geplaatst en dat splitsingen naar subtakken uitsluitend aan het einde van een tak worden gemaakt (Buzan, 1995). Deze spelregels zijn belangrijk voor maken van een overzichtelijke en leesbare mindmap in DMM zorgt de software ervoor dat aspecten geautomatiseerd zijn;
4. **DMM is productiever bij aanmaak van takken en concepten in mindmap:** wanneer DMM productiever is bij het maken van een mindmap, dan zullen in de digitale conditie gemiddeld meer takken en concepten worden gemaakt vergeleken met een papieren mindmap. Het aantal takken en begrippen in een mindmap is dus de indicator van de *productiviteit*;

5. **DMM leidt tot een hogere kwaliteit van de mindmap:** op grond van de cognitieve belastingstheorie theorie veronderstellen we dat leerlingen die moeite hebben met de procedurele vaardigheden, zoals het maken van takken en afbeeldingen, hier minder hinder van zullen ondervinden als zij werken met digitale mindmaps (Paas & van Merrienboer, 1993). Daarnaast is het in DMM gemakkelijker om de mindmap aan te passen en te verbeteren in vergelijking met mindmappen op papier, waardoor inhoudelijke keuzes gemakkelijker herzien kunnen worden. Omdat leerlingen minder mentaal en fysiek gehinderd worden in het constructieproces, verwachten wij dat zij kwalitatief betere mindmaps zullen maken in DMM (Stokhof & De Vries, 2009). De volgende kwaliteitsaspecten zijn te onderscheiden in een mindmap:

- de **relevantie** van begrippen in de mindmap: het aantal relevante begrippen in de mindmap is een indicatie van de kwaliteit van de leerstofbeheersing. Het is niet de bedoeling geweest om te toetsen of leerlingen de (klassen)mindmap exact konden reproduceren. Leerlingen kregen de vrijheid om een eigen toetsmindmap te maken, zolang de gebruikte begrippen maar een relatie met onderwijschema hadden en ten opzichte van elkaar logisch geordend werden. Op basis van deze criteria is de relevantie van alle concepten in de mindmap getoetst (D’Antoni, 2009; Buzan, 1995).
- de **basiskwaliteit** van de mindmap: hier gaat het om de beheersing van de basisstof. Om dit vast te stellen moet de aanwezigheid van begrippen in een leerlingmindmap vergeleken worden met de begrippen in de expertmap. Deze expertmap is vooraf door de leerkrachten vastgesteld. De mate van overeenkomst tussen expert- en leerlingmindmap geeft aan in welke mate de leerlingen de basisleerstof beheersen (McClure, 1999);
- de **toegevoegde kwaliteit** van de mindmap: een ander aspect van de kwaliteit is de verrijking van de leerstof. Het gaat dan om nieuwe kennis, die de leerlingen door hun eigen leervragen en leeractiviteiten hebben ontwikkeld en toevoegen aan de basisstof. Omdat niet vooraf vaststaat welke leervragen de leerlingen gaan stellen en tot welke kennis de leerlingen dan komen, is dit aspect moeilijker te meten. Door leerlingmindmaps te vergelijken met de expertmap kan wel worden geconstateerd welke begrippen niet tot de basisstof behoren. Vervolgens wordt gekeken hoeveel nieuwe begrippen in de leerlingmindmap zijn opgenomen;
- de **hiërarchische kwaliteit** van de mindmap: deze wordt vastgesteld door het onderscheid tussen hoofd- en bijzakken. Er wordt gekeken of de leerlingen de begrippen uit basisstof en verrijkingsstof niet alleen kunnen benoemen, maar ook of leerlingen juiste verbanden kunnen leggen en de begrippen hiërarchisch kunnen ordenen. Om deze kwaliteit vast te stellen wordt er gekeken naar ordeningsstructuren en naar ordeningsbegrippen (D’Antoni, 2009; Novak, 2002)

6. **DMM leidt tot minder herhaling van concepten in de mindmap:** een van de grondbeginselen van de mindmap is het idee om begrippen optimaal te plaatsen in de radiale takkenstructuur. Wanneer een begrip herhaald wordt in een mindmap, is in veel gevallen niet de meest optimale ordening van begrippen gekozen. Het ontbreken van herhaling is dus een ook indicator van het conceptuele inzicht van de leerling (Buzan & Buzan, 2007). Omdat leerlingen in DMM de mindmap gemakkelijker kunnen aanpassen, wordt verwacht dat het herhalen van concepten minder zal voorkomen;

7. **DMM verbetert het gebruik van afbeeldingen:** deze verwachting verwijst naar associatieve kracht van afbeeldingen die het inzicht in de begrippen in de mindmap versterkt en het onthouden bevordert (Buzan & Buzan, 2007). Leerlingen uit de controle groep kunnen hun
eigen associaties met concepten tekenen op papier, maar zijn dan afhankelijk van hun terekenbaarheid. De leerlingen in de digitale conditie kunnen afbeeldingen toevoegen uit de documentenbibliotheek van de software, of uit bestanden op de computer of internet. Het is daarnaast ook mogelijk om zelf digitale tekeningen te maken in de mindmap software. Hoe meer relevante afbeeldingen geplaatst zijn, hoe beter de leerling beelden kan associëren met gebruikte begrippen. Het aantal relevante afbeeldingen is een indicatie voor toegenomen inzicht in de leerstof (leerstofbeheersing). Doordat leerlingen in DMM kunnen putten uit grote bronnen met afbeeldingen (internet en software bibliotheek) hebben zij meer mogelijkheden om passende afbeeldingen te plaatsen bij de concepten in hun mindmap.

De verwachtingen bij deelvraag (b) zijn de volgende:

1. **DMM leidt tot hogere motivatie van leerkrachten voor vraaggestuurd leren:** we verwachten dat leerkrachten sterker gemotiveerd raken, doordat mindmappen een toegankelijk instrument biedt dat diverse knelpunten in vraaggestuurd leren kan aanpakken: mindmappen maakt een duidelijke koppeling mogelijk tussen eigen leervragen en collectieve leerdoelen als ontwerpinstrument, mindmappen ondersteunt het begeleidingsproces van de leervragen als didactisch instrument, mindmappen geeft zicht op de vorderingen van de leerlingen als toetsinstrument. We veronderstellen ook dat leerkrachten gemotiveerd raken voor mindmappen, omdat de leerlingen hier enthousiast voor zullen zijn. We verwachten een sterker effect van DDM, omdat digitaal mindmappen praktischer en efficiënter toe te passen is en omdat er meer gebruiksmogelijkheden beschikbaar zijn.

2. **DMM draagt bij inzichten en vaardigheden van leerkrachten om met mindmaps vraaggestuurd onderwijs te ontwerpen.** Deze deelvraag richt zich op de functie van de mindmap als ontwerpinstrument: wanneer leerkrachten eerst individueel de kernbegrippen van het leerarrangement vastleggen in een mindmap en hier vervolgens gezamenlijk een collectieve leerkrachtmindmap van samenstellen, verwachten wij dat leerkrachten tijdens het ontwerpen door dit proces meer overzicht en duidelijkheid over de doelen en de inhoud verwerven. Dit geeft leerkrachten het vertrouwen dat leerlingen aan de doelen werken wanneer zij via eigen leervragen gaan leren. Vooral bij het maken van de gezamenlijke leerkrachtmindmap verwachten wij dat DMM praktischer is, omdat leraren dan gemakkelijker takken kunnen aanmaken en aanpassen tijdens de discussie over de kernbegrippen.

3. **DMM draagt bij aan de inzichten en vaardigheden van leerkrachten om met mindmaps vraaggestuurd onderwijs te kunnen uitvoeren.** Deze deelvraag richt zich op de functie van de mindmap als didactisch instrument: van DMM wordt verwacht dat het in de klassenpraktijk toegankelijker en minder arbeidsintensief in gebruik zal zijn, vergeleken met mindmappen op papier. De verwachting is dat het maken van een klassikale mindmap in DMM gemakkelijker zal zijn dan deze mindmap op papier te maken. Een digitale mindmap is eenvoudiger aan te passen, aan te vullen en te voorzien van links naar internet, foto’s en aantekeningen. Bovendien kan de ontwikkeling van de mindmap in meerdere versies worden opgeslagen en worden gedeeld. De veronderstelling die we gaan toetsen is, dat leerkrachten het leerarrangement met DMM beter uitvoerbaar vinden;

4. **DMM draagt bij aan de inzichten en vaardigheden van leerkrachten om met mindmaps vraaggestuurd onderwijs te kunnen evalueren** Deze deelvraag richt zich op de functie van de mindmap als toetsinstrument: leerkrachten gaan na afloop met behulp van een analyse-instrument de toetsmindmaps van de leerlingen vergelijken en evalueren. Gekeken wordt welke mate van leerstofbeheersing de individuele leerlingen hebben ontwikkeld en welke algemene leereffect het leerarrangement op de groep heeft gehad. Wij verwachten hierin geen verschillen tussen DMM en papier, omdat de voormeting door alle leerlingen op papier is gemaakt, maar zijn wel benieuwd of de mindmap bruikbare informatie geeft als toetsinstrument aan de leerkrachten.
De verwachting bij deelvraag (c) is het volgende:

1. **DMM is efficiënter dan mindmappen op papier**: In deze deelvraag zijn de functionaliteiten van de mindmap voor het ontwerpen en uitvoeren van het leerarrangement relevant: doordat digitale mindmaps sneller te maken en aan te passen zijn, verwachten wij dat leerkrachten het leerarrangement efficiënter kunnen ontwerpen en begeleiden met DMM. Tevens verwachten wij dat de leerlingen in minder tijd dezelfde of zelfs hogere resultaten kunnen bereiken door te werken met digitale mindmaps (zie ook 2.4).

De verwachtingen bij deelvraag (d) is het volgende:

1. **DMM heeft een hogere educatieve waarde dan mindmappen op papier**: omdat wij verwachten dat DMM een sterker positief effect heeft op motivatie, leerstrategie en efficiëntie, verwachten wij ook dat de educatieve waarde van DMM hoger is dan van papieren mindmapping. In deze deelvraag gaat om de mindmap als ontwerpinstrument en als didactisch hulpmiddel.

2.2 Leerlingvariabelen

De volgende variabelen worden onderzocht op leerlingniveau (deelvraag a):

- **Intrinsieke motivatie**: een intrinsiek gemotiveerde leerling wil zelf leren en is meer gericht op betekenisverlening van kennis, samenwerking en zelfregulatie dan zijn extrinsiek gemotiveerde klasgenoot. Om intrinsieke motivatie te bevorderen is het van belang aan te sluiten op het de leervragen en het competentieniveau van de leerling, voortdurende controle en sturing te vermijden en een leeromgeving te creëren waarin de leerling het gevoel heeft van vertrouwen in de personen om hem heen, zoals de leerkracht en medeleerlingen (Ryan & Deci, 2000)

- **Diepere leerstrategie**: in de onderwijswetenschap wordt onderscheid gemaakt tussen diepe en oppervlakkige leeropbrengsten (Biggs, 1993). Oppervlakkige leeropbrengsten worden bereikt door reproductie en onthouden van letterlijke inhoud van de lesstof, zonder transfer te maken. Diepe leeropbrengsten worden gekenmerkt door analytisch, synthetisch en kritisch denken, en het trekken van conclusies. Bij diepe leeropbrengsten wordt betekenis verleend aan kennis, waardoor deze kennis kan worden toegepast in nieuwe situaties;

- **Leerstofbeheersing**: met leerstofbeheersing zal in het onderzoek zowel de basis leerstofbeheersing als de toegevoegde leerstofbeheersing worden bedoeld. Basis leerstofbeheersing definiëren wij als de minimale conceptuele kennis die voor alle leerlingen in de klas geborgd moeten zijn. Met toegevoegde leerstofbeheersing bedoelen we het vaststellen van de mate van verrijking en verdieping die individuele leerlingen aan de hand van eigen leervragen hebben bereikt.

2.3 Leerkrachtvariabelen

Op leerkracht niveau worden de volgende variabelen onderzocht (deelvraag b):

- **Motivatie**: ontwikkeling van de motivatie tot het willen implementeren van vraaggestuurde leeromgevingen waarin leerstof in kaart wordt gebracht met digitale mindmappen;

- **Ontwerpcapaciteit**: ontwikkeling van inzicht en vaardigheden om vraaggestuurd onderwijs duurzaam te kunnen ontwerpen;

- **Uitvoercapaciteit**: ontwikkeling van inzicht en vaardigheden om vraaggestuurd onderwijs te kunnen uitvoeren;

- **Evaluatiecapaciteit**: ontwikkeling van inzicht en vaardigheden om vraaggestuurd onderwijs te kunnen evalueren.
2.4 Efficiëntie en educatieve waarde

- **Efficiëntie (deelvraag c):** efficiëntie definiëren wij als: het verkrijgen van het grootst mogelijke effect of resultaat door optimaal gebruik van beschikbare middelen. Wanneer we deze definitie betrekken op het onderwijs, hebben we het over twee begrippen; effectiviteit en middelen. De effectiviteit van DMM kan worden bepaald door de leerresultaten. In dit onderzoek zijn deze leerresultaten geoperationaliseerd als de intrinsieke motivatie, leerstrategie en leerstofbeheersing. De middelen zijn de tijd die de leerkracht kwijt is aan het werken van DMM en de tijd die leerlingen eraan besteden. Samengevat kan de efficiëntie van DMM worden bepaald door de effectiviteit van DMM (gemeten door intrinsieke motivatie, leerstrategie en leerstofbeheersing) te delen door de inspanningsuren van de leerkracht en de lestijd;

- **Educatieve waarde (deelvraag d):** Dodge (2007) heeft een model ontwikkeld dat tot doel heeft om inzicht te bieden in de educatieve waarde van een ICT-interventie. Volgens dit model kan de educatieve waarde worden bepaald door de mate waarin de ICT-interventie de aandacht van leerlingen vasthoudt, leidt tot diep leren en een efficiënt leermiddel is. Deze drie concepten vormen het uitgangspunt voor de educatieve waarde, de *power indicator* van een leermiddel (Dodge, 2007; Van Schie, 2008). Dodge vat dit samen in de formule: Power indicator = aandacht * diep leren * efficiëntie. Van Schie (2008) heeft als een van de eersten in Nederland getracht om de concepten van de power indicator te meten bij een onderzoek naar de meerwaarde van de virtuele online omgeving “Second Life”. Door interviews met docenten over de intrinsieke motivatie, de diepgang van het leren en de efficiëntie van de game werden scores bepaald tussen 1 en 10 en werd de power indicator berekend. De wijze waarop de power indicator werd berekend maakte de score echter niet geschikt voor het objectief meten van de educatieve waarde van een toepassing. In dit onderzoek bouwen we voort op het onderzoek van Vos (2009) voor de operationalisatie van de drie concepten in de formule. Zij vervangt attendie door het concept intrinsieke motivatie en het concept diep leren door (diepere) leerstrategie, resulterend in de volgende formule:

```
Power indicator = intrinsieke motivatie * diepere leerstrategie * efficiëntie
```

Deze formule zal worden gebruikt om de educatieve waarde van DMM (deelvraag d) te onderzoeken.
3 Onderzoeksmethode

Dit hoofdstuk beschrijft op welke wijze het onderzoek is vormgegeven. Na een toelichting op de onderzoekspopzet (3.1) wordt de verdeling van de deelnemende populatie over scholen, leerarrangementen en onderzoeksvoorzieningen uitgelegd (3.2). Vervolgens wordt een chronologische overzicht van de onderzoeksactiviteiten gepresenteerd (3.3) en de rol van de mindmaps in de leerarrangementen beschreven (3.4). Paragraaf 3.5 beschrijft in welke middelen zijn ingezet om data te verzamelen over de verschillende variabelen in dit onderzoek. Tevens wordt toegelicht op welke theoretische basis deze instrumenten zijn gebaseerd. Het hoofdstuk wordt afgesloten met een overzicht van de variabelen, de instrumenten en de theorie (3.6).

3.1 De onderzoekspopzet

Het onderzoek is opgezet volgens een pretest-posttest control group design. Het is een quasi-experimentele ontwerp gericht op het beschrijven van effecten van DMM op leerling- en leerkrachtvariabelen, de efficiëntie van DMM en de educatieve waarde van DMM voor het onderwijs. Als tool voor DMM wordt gebruik gemaakt van ‘I-mindmap’, een toegankelijk en veelzijdig softwareprogramma, dat speciaal ontwikkeld is voor mindmapping. Verder zijn er computers aanwezig op de scholen, zodat leerlingen aan de DMM kunnen werken (individueel en groepsgewijs) en in elke klas is een digibord aanwezig.

3.2 Populatie

Aan het onderzoek nemen 271 leerlingen (zes groepen 5/6 en zes groepen 7/8) en 12 leerkrachten van de basisscholen De Esdoorn te Elst en Laurentiushof te Vierlingsbeek deel (respectievelijk 126 en 145 leerlingen per school en zes leerkrachten van elke school). Deze scholen hebben ervaring met thematisch wereldoriëntatie onderwijs en affiniteit met onderzoekend leren, maar zijn nog onbekend met DMM in relatie tot het ontwerpen van lessen en het in kaart brengen van leerstofbeheersing in vraaggestuurd leren. De klassen zijn at random toegewezen aan de experimentele conditie waarin zal worden gewerkt met digitale mindmapping [DMM] of aan de controle conditie waarin gewerkt zal worden met papieren mindmapping [P] (zie Tabel 1).

Tabel 1. Verdeling onderzoekspopulatie per school, thema, groep en conditie

<table>
<thead>
<tr>
<th>School</th>
<th>De Esdoorn</th>
<th>De Laurentiushof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thema</td>
<td>Chocola</td>
<td>Gelderland</td>
</tr>
<tr>
<td></td>
<td>Missie naar Mars</td>
<td>Oceanië</td>
</tr>
<tr>
<td>Groep</td>
<td>5-6</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>7-8</td>
</tr>
<tr>
<td>Conditie</td>
<td>DMM*</td>
<td>DMM</td>
</tr>
<tr>
<td>Klassen</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leerlingen</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

* DMM= digitale mindmap conditie
** P = papieren mindmap conditie

3.3 Onderzoeksprocedure

Om de scholen goed voor te bereiden op het onderzoek zijn verschillende activiteiten ondernomen op de onderzoeksscholen. Hieronder staat een beknopt chronologisch overzicht van de onderzoeksprocedure.¹

¹ In Bijlage 1 staat toegelicht op welke wijze deze activiteiten nadere invulling hebben gekregen.
3.4 Onderzoeksinstrumenten

3.4.1 Intrinsieke motivatie leerlingen

Intrinsieke motivatie is gemeten met een selectie uit de ‘intrinsic motivation inventaris’ (IMI) van Ryan en Deci (2000). De oorspronkelijke IMI bevat 45 items en meet de subschalen interesse, ervaren competentie, inzet, druk, ervaren keuze, waarde en ervaren verwantschap. De items zijn bewerkt en herschreven voor de doelgroep in de voormeting en vervolgens nader gespecificeerd voor het werken met (digitale) mindmaps in de nameting. Het betreft de items 1-29 in Bijlage 4. De antwoorden op items worden gegeven op een 4-punts Likertschaal (‘vind ik helemaal niet’ (1) tot ‘vind ik helemaal wel’ (4)). Na het leerarrangement is een score voor de intrinsieke motivatie bepaald om uiteindelijk de power indicator te kunnen berekenen. Deze score is berekend door de groepsgemiddelden op intrinsieke motivatie. Betrouwbaarheidsanalyses zijn uitgevoerd om te bepalen of de items binnen de schalen voldoende samenhangen. De Cronbach’s alpha waren voldoende, zie tabel 2 voor het overzicht per variabele.

Tabel 2. *Betrouwbaarheid leerling vragenlijst variabelen motivatie*

<table>
<thead>
<tr>
<th>Variabelen</th>
<th>Cronbach’s α in voormeting</th>
<th>Cronbach’s α in nameting</th>
</tr>
</thead>
<tbody>
<tr>
<td>ervaren competentie</td>
<td>0,69</td>
<td>0,80</td>
</tr>
<tr>
<td>interesse</td>
<td>0,75</td>
<td>0,86</td>
</tr>
<tr>
<td>ervaren keuze</td>
<td>0,79</td>
<td>0,81</td>
</tr>
<tr>
<td>druk</td>
<td>0,73</td>
<td>0,75</td>
</tr>
<tr>
<td>inzet</td>
<td>0,62</td>
<td>0,79</td>
</tr>
<tr>
<td>diepe leerstrategie</td>
<td>0,71</td>
<td>0,74</td>
</tr>
</tbody>
</table>

3.4.2 Diepere leerstrategie leerlingen

Diepere leerstrategie is gemeten op basis van de Revised two-factor Study Proces Questionnaire (R-SPQ-2F) van Biggs (2001). De originele vragenlijst bestaat uit tien items die diep leren meten en tien items die oppervlakkig leren meten. De twee concepten zijn onderscheiden door vier subschalen die diepe en oppervlakkige leerstrategie en diepe en oppervlakkige motivatie meten. In het onderzoek zijn de subschalen oppervlakkige motivatie en diepe motivatie achterwege gelaten, omdat motivatie al wordt gemeten met de IMI-vragenlijst. De antwoorden op items zijn gegeven op een 4-punts Likertschaal (‘vind ik helemaal niet’ (1) tot ‘vind ik helemaal wel’ (4)). Er wordt een score voor de leerstrategie bepaald om de power indicator te kunnen berekenen. Per onderzoeksgroep is een gemiddelde score op de schaal berekend. Het gemiddelde van deze scores zorgt uiteindelijk voor een score op leerstrategie. Betrouwbaarheidsanalyses zijn uitgevoerd om te bepalen of de items binnen de schalen voldoende samenhangen. De Cronbach’s alpha was onvoldoende voor oppervlakkige
strategie en voldoende voor diepe leerstrategie, zoals zichtbaar is in tabel 3. Voor de analyse van de variabele diepere leerstrategie is daarom alleen gebruik gemaakt van de items voor diepe leerstrategie. Dit zijn de items 30-35 in Bijlage 4.

Tabel 3.

<table>
<thead>
<tr>
<th>Variabelen</th>
<th>Cronbach’s α in voormeting</th>
<th>Cronbach’s α in nameting</th>
</tr>
</thead>
<tbody>
<tr>
<td>oppervlakkige leerstrategie</td>
<td>0,38</td>
<td>0,33</td>
</tr>
<tr>
<td>diepe leerstrategie</td>
<td>0,71</td>
<td>0,74</td>
</tr>
</tbody>
</table>

3.4.3 Leerstofbeheersing: kwaliteit mindmaps

Om de kwaliteit van mindmaps te beoordelen, wordt in onderzoek vaak gebruik gemaakt van de vergelijking met expertmaps. Hier is bijvoorbeeld Beyerbachs scoring system op gebaseerd (Beyerbach, 1990). McClure heeft aangetoond dat het vergelijken van mindmaps met expertmaps de meest valide en betrouwbare methode is om de kwaliteit van een mindmap vast te stellen (McClure, 1999). McGaghie heeft echter significante verschillen in structuur tussen mindmaps van de verschillende experts ontdekt (McGaghie, 2000). In dit onderzoek wordt gebruik gemaakt van expertmaps in mindmap-analyse-instrument om de beheersing van de basisstof vast te stellen. Om de validiteit van de expertmaps te versterken, zijn deze gebaseerd op zowel de leerkrachtmindmaps als op de klassenmindmaps die in de startbijeenkomsten zijn gemaakt. De verrijkingstof die door de leerlingen wordt gemaakt, kan niet worden vastgelegd in een expertmap, omdat vooraf niet te voorspellen is welke kennis dit oplevert en deze per klas kan afwijken. Wel kan worden vastgesteld in welke mate relevante nieuwe kennis wordt toegevoegd door concepten te vergelijken met de basisconcepten in de expertmap.

In dit onderzoek werden de leerlingen niet aangestuurd om de klassenmindmap exact te reproduceren in de toetsmindmaps. Er is expliciet ruimte gelaten voor leerlingen om eigen keuzes te maken voor het opnemen van concepten in hun mindmaps, mits relevant en logisch geordend. Uitsluitend de vergelijking tussen expertmap en toetsmindmap voldoet daarom in deze context niet om de kwaliteit van leerstofbeheersing vast te stellen, omdat er geen sprake is van een gesloten opdracht met een vastgesteld aantal specifiek geordende concepten (McClure, 1999).

Om de betrouwbaarheid van het mindmap-analyse-instrument te vergroten is de vergelijking tussen leerling mindmap met de expertmap aangegrepen met andere indicatoren voor de kwaliteit van de leerstofbeheersing. Koopman (2009) heeft in haar promotie-onderzoek leerstofvorderingen geanalyseerd in mindmaps. Belangrijke criteria waren: het aantal concepten, de relatieve positie van concepten ten opzichte van het centrum en clusters van concepten. Een andere bron voor de

Tabel 4. Mindmap-analyse-instrument: categorieën, variabelen, indicatoren en analyse

<table>
<thead>
<tr>
<th>Categorieën</th>
<th>Variabelen</th>
<th>Indicator</th>
<th>Analyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leesbaarheid mindmap</td>
<td>Tekst op tak</td>
<td>Tekst zichtbaar boven op tak</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>Leesbaarheid van begrippen</td>
<td>Zonder te draaien alle tekst leesbaar</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>Splitsing aan einde van tak</td>
<td>Zichtbare splitsing aan einde tak</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td>Productiviteit</td>
<td>Aantal begrippen/takken</td>
<td>Tellen</td>
<td>Getal</td>
</tr>
<tr>
<td>Kwaliteit concepten in</td>
<td>Relevante concepten benoemd in</td>
<td>Relevantie van concepten vaststellen</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td>mindmap</td>
<td>mindmap</td>
<td>volgens stroomschema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basis concepten leerstof benoemd</td>
<td>Vergelijking met expertmindmap van</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>(basiskwaliteit)</td>
<td>leerarrangement: percentage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(toegevoegde kwaliteit)</td>
<td>aanwezig</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uitbreiding leerstof met nieuwe</td>
<td>Vergelijking met expertmindmap van</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>concepten</td>
<td>leerarrangement: aantal concepten</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(toegevoegd aan basiskwaliteit)</td>
<td>toegevoegd aan basiskwaliteit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Onderscheid hoofd- bijzaken</td>
<td>Verschil tussen onduidelijke</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>zichtbaar in hiërarchische ordening van begrippen</td>
<td>samenhang, opsommingen, en</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bijzaken in hiërarchische kwaliteit</td>
<td>ordeningen op 1 of 2 niveaus</td>
<td></td>
</tr>
<tr>
<td>Herhaling concepten</td>
<td>Herhaling van begrippen</td>
<td>aantal herhaalde begrippen</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td>Kwaliteit Afbeeldingen In</td>
<td>Gebruik afbeeldingen</td>
<td>Aanwezig in mindmap</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td>mindmap</td>
<td>Passende afbeeldingen</td>
<td>Percentage passende afbeeldingen</td>
<td>4 puntsschaal</td>
</tr>
<tr>
<td></td>
<td>Aantal afbeeldingen</td>
<td>Tellen</td>
<td>Getal</td>
</tr>
</tbody>
</table>

Om de interbeoordelaars-betrouwbaarheid vast te stellen, zijn alle mindmaps onafhankelijk door drie beoordelaars beoordeeld. Na deze steekproef is gekeken naar de mate van overeenkomsten in deze beoordelingen. De overeenkomsten waren voldoende om de meting als betrouwbaar te aanvaarden (gemiddelde overeenstemming > 80%).

3.4.4 Motivatie, ontwerpcapaciteit, uitvoeringscapaciteit en evaluatiecapaciteit

De leerkrachtvariabelen zijn in, voor en na het uitvoeren van het leerarrangement gemeten met een vragenlijst (zie Bijlage 1). Deze data zijn aangevuld met observaties tijdens het uitvoering en met semigestructureerde interviews na afloop van het leerarrangement. De vragenlijst en het interview zijn deels gebaseerd op het onderzoek van Stokhof en de Vries (2009). De vragenlijst richt zich op de motivatie tot het willen implementeren van vraaggestuurd leeromgevingen met (D)MM en op de inzichten en de vaardigheden tot het kunnen ontwerpen, uitvoeren en evalueren van vraaggestuurd onderwijs met (D)MM. De antwoorden op items worden gegeven op een 4-punts Likertschaal. De variabelen in leerkrachtvragenlijsten zijn onderzocht op betrouwbaarheid, maar niet statistisch getoetst, vanwege het kleine aantal respondenten (N=12). Voor de variabele ‘evaluatiecapaciteit’ analyseren de leerkrachten de mindmaps van hun eigen leerlingen om zicht te krijgen op de leerstofontwikkeling. Hun ervaring met deze analyse wordt onderzocht in de interviews. De antwoorden op de vragenlijsten worden in een cross-case analyse in een verklarend kader gebracht, samen met de informatie uit de interviews en het email logboek, zodat inzicht ontstaat in de effecten en de bevorderende en belemmerende factoren voor vraaggestuurd leren met DMM.
3.4.5 Efficiëntie

De efficiëntie van DMM wordt bepaald door de verhouding tijd-leerling en tijd-leerkracht tot intrinsieke motivatie en leerstrategie. De factoren intrinsieke motivatie en leerstrategie worden afgeleid uit de resultaten van de leerling-vragenlijsten. De tijd van de leerling wordt bepaald door het aantal minuten dat de leerlingen hebben besteed aan het werken aan het leerarrangement. De tijd van de leerkracht wordt bepaald door het aantal minuten voorbereidings- en begeleidingstijd. De leerkrachten zijn verantwoordelijk voor het loggen van de tijd. De twee verkregen waarden worden gemiddeld en afgezet tegen de somscore op intrinsieke motivatie en diepere leerstrategie. Om de efficiëntiescore vervolgens goed te kunnen interpreteren, wordt de verkregen score met tien vermenigvuldigd. De factor tijd gemeten in minuten wordt namelijk een relatief groot getal in vergelijking met de factoren motivatie en diepere leerstrategie, die op een 4 puntsschaal zijn gemeten. De berekening van efficiëntie gaat aan de hand van de volgende formule:

\[
\text{Efficiëntie} = \frac{\text{motivatie + diepere leerstrategie}}{\text{tijd leerkracht + tijd leerling}} \times 10
\]

3.4.6 Educatieve waarde: de Power Indicator

Om de educatieve waarde van DMM vast te stellen, wordt de power indicator berekend met de volgende formule:

\[
\text{Power indicator} = \text{intrinsieke motivatie} \times \text{leerstrategie} \times \text{efficiëntie}
\]

Intrinsieke motivatie en leerstrategie worden gemeten in de leerlingen vragenlijst op een 4-puntsschaal. De somscores op deze variabelen worden omgezet naar een waarde tussen 1-10 en dan ingevuld in de formule.

3.4.7 Samenvattend overzicht instrumenten

In Tabel 5 wordt samengevat welke instrumenten per variabele worden ingezet.

<table>
<thead>
<tr>
<th>Te meten variabele</th>
<th>Meetinstrument</th>
<th>Gebaseerd op</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsieke motivatie Leerstrategie</td>
<td>Vragenlijst leerlingen (zie Bijlage 3)</td>
<td>IMI (Ryan & Deci, 2000)) SPQ-2F (Biggs, 2001)</td>
</tr>
<tr>
<td>Motivatie Ontwerpcapententie Uitvoeringscapententie Evaluatiecapententie</td>
<td>Vragenlijst leerkrachten (zie Bijlage 1) Gestructureerd interview Email logboek Evaluatie mindmaps</td>
<td>Onderzoek vraaggestuurd leren (Stokhof en De Vries, 2009)</td>
</tr>
<tr>
<td>Efficiëntie</td>
<td>Efficiëntie = motivatie + leerstrategie * 10 tijd leerkracht + tijd leerling</td>
<td>(Dodge, 2007; van Schie, 2008; Kennisnet 2008)</td>
</tr>
<tr>
<td>Educatieve waarde</td>
<td>Power indicator = intrinsieke motivatie * leerstrategie * efficiëntie</td>
<td>(Vos, 2009)</td>
</tr>
</tbody>
</table>
4 Onderzoeksresultaten leerlingen

Dit hoofdstuk presenteert de resultaten op de onderzoeksvragen voor de leerlingen. Eerst worden in paragraaf 4.1 de verwachtingen kort herhaald. In de daarop volgende paragrafen worden de effecten van DMM op motivatie (4.2), leerstrategie (4.3) en leerstofbeheersing (4.4) toegelicht. De verschillende aspecten in de mindmap, die de mate van leerstofbeheersing aangeven, worden uitgediept: de leesbaarheid, de aanmaak van het aantal takken, de kwaliteit van begrippen, de mate van herhaling en de kwaliteit van afbeeldingen. Een samenvattende conclusie sluit het hoofdstuk af (4.5).

4.1 Verwachtingen

Om de effecten van mindmapping (papier en digitaal) op de motivatie, diepere leerstrategie en leerstofbeheersing vast te stellen zijn zeven verwachtingen getoetst.

Met betrekking tot motivatie:
- DMM bevordert de motivering van leerlingen meer in vergelijking met papieren mindmapping.

Met betrekking tot diepere leerstrategie:
- DMM bevordert het toepassen van diepere leerstrategieën meer in vergelijking met papieren mindmapping.

Met betrekking tot leerstofbeheersing:
- DMM bevordert het maken van goed leesbare mindmaps meer in vergelijking met papieren mindmapping;
- DMM is efficiënter bij aanmaak van takken en concepten in mindmap in vergelijking met papieren mindmapping;
- DMM leidt tot meer relevant geplaatste concepten in de mindmap in vergelijking met papieren mindmapping;
- DMM leidt tot een hogere basiskwaliteit, toegevoegde kwaliteit en hiërarchische kwaliteit van de mindmap in vergelijking met papieren mindmapping;
- DMM leidt tot minder herhaling van concepten in de mindmap in vergelijking met papieren mindmapping;
- DMM verbetert het gebruik van afbeeldingen in vergelijking met papieren mindmapping.

4.2 Gebruikte data en data-analyse

Om de effecten op motivatie en leerstrategie te bepalen zijn leerling-vragenlijsten gebruikt, die voor en na afloop van het leerarrangement zijn afgenomen (N= 252). Voor de effecten op de leerstofbeheersing zijn de leerlingmindmaps geanalyseerd uit voor-, na- en retentiemetingen. Hierbij is alleen gebruik gemaakt van sets waarin leerlingen alle 3 de mindmaps hebben gemaakt (N= 247)

Alle statistische berekeningen zijn uitgevoerd in SPSS versie 17 (Chicago, IL). Bij de analyse is eerst de betrouwbaarheid van items vastgesteld en voor de mindmaps tevens de interrater-betrouwbaarheid. Vervolgens zijn door een variantieanalyse met herhaalde metingen de hypotheses getoetst. We hebben daarbij gekeken naar hoofdeffecten op de factor tijd (wat zijn de verschillen op de variabelen tussen de verschillende metingen?) en de factor conditie (wat zijn de verschillen op de variabelen tussen de papieren en de DMM conditie?) en naar mogelijke interactie-effecten tussen tijdstip van meting en conditie. We hebben in de rapportage aangegeven waar al dan niet sprake is van significante hoofd- en interactie-effecten. In de tabel in bijlage 5 staat een overzicht van de F-toetsen, de significanties en de sterkte van het de effecten (partial squared eta) per variabele en factor.
4.3 Effecten op motivatie
In Tabel 6 worden de gemiddelden per conditie en meting gepresenteerd voor de vijf variabelen die motivatie meten: ‘ervaren competentie, interesse, keuze, druk en inzet’.

Tabel 6.
Gemiddelden op de vijf motivatievariabelen

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep (DMM)</th>
<th>Controle groep (papier)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Ervaren competentie</td>
<td>M</td>
<td>3,07</td>
</tr>
<tr>
<td></td>
<td>,,**</td>
<td></td>
</tr>
<tr>
<td>Interesse</td>
<td>M</td>
<td>2,82</td>
</tr>
<tr>
<td></td>
<td>,,**</td>
<td></td>
</tr>
<tr>
<td>Keuze</td>
<td>M</td>
<td>2,70</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Druk</td>
<td>M</td>
<td>1,82</td>
</tr>
<tr>
<td></td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Inzet</td>
<td>M</td>
<td>3,45</td>
</tr>
</tbody>
</table>

*significant verschil op factor tijd tussen metingen (p<0,05)
** significant verschil op factor conditie (p<0,05)
***significant verschil op interactie effect tussen factor tijd en factor conditie (p<0,05)

Uit Tabel 6 is af te leiden dat alle leerlingen significant hoger scoren op vier van de vijf variabelen in de nameting (hoofdeffect tijd). Voor de variabele ‘druk’ geldt dat een lagere score wijst op minder druk en dus op een positief effect. Leerlingen in de DMM conditie scoren significant hoger op ‘ervaren competentie’ en ‘interesse’ dan leerlingen in de papieren conditie (hoofdeffect conditie). Ook het scoreverloop van de DMM groep is significant anders dan het verloop van de controle groep op de variabelen ‘ervaren competentie’ en interesse (interactie effect tijd en conditie). Het gemiddelde van ‘ervaren competentie’ neemt in DMM toe met 0,07, terwijl in de controle groep dit gemiddelde daalt met -0,16. De gemiddelde interesse van leerlingen in DMM stijgt met 0,14 in de controle groep. In beide condities neemt de ‘keuze’ toe, maar de verschillen tussen de condities zijn niet significant. De druk op leerlingen en de inzet nemen in beide condities af, maar ook hier zijn de verschillen tussen de condities niet significant (zie bijlage 5).

Om tot een totaalscore te komen voor motivatie is de gemiddelde somscore van de vijf variabelen berekend (Tabel 7).

Tabel 7.
Gemiddelden van somscore ‘motivatie’

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>somscore motivatie</td>
<td>M</td>
<td>2,91</td>
</tr>
<tr>
<td></td>
<td>,,**</td>
<td></td>
</tr>
</tbody>
</table>

*significant verschil op factor tijd tussen metingen (p<0,01)
** significant verschil op factor conditie (p<0,02)
***significant verschil op interactie effect tussen factor tijd en factor conditie (p<0,05)

In Tabel 7 valt op dat de gemiddelde somscore op motivatie in de DMM conditie iets hoger is dan bij papier mindmapping (M = 3,06 versus M = 2,92) en ook iets sterker stijgt dan in de controle groep (verschilsscore van +0,15 versus een verschilsscore van +0,06). Deze verschillen zijn significant, zowel op de hoofdfactoren als op het interactie-effect. Hieruit leiden wij af dat DMM leerlingen sterker motiveert dan mindmappen op papier, zoals zichtbaar in Figuur 5.

Figuur 5. Gemiddelde scores op somscore motivatie per conditie en meting
4.4 Effecten op diepere leerstrategie

In Tabel 8 worden de gemiddelden per conditie en meting gepresenteerd voor de variabele die de mate van diepere leerstrategie bij leerlingen meet:

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Diepere leerstrategie ***</td>
<td>2,60</td>
<td>2,64</td>
</tr>
</tbody>
</table>

***significant verschil op interactie effect tussen factor tijd en factor conditie (p<0,02)

Bij de variabele ‘diepere leerstrategie’ zijn geen significante verschillen zichtbaar tussen de metingen (hoofdfactor tijd) of tussen de groepen (hoofdfactor conditie). Wel neemt het gebruik van diepere leerstrategieën enigszins toe bij leerlingen in de DMM conditie (+0,04). In de papieren conditie daalt het gebruik van diepere leerstrategieën licht (-0,09). Dit scoreverloop van de DMM groep is significant anders dan het scoreverloop van de controle groep (interactie effect tijd en conditie) zoals zichtbaar in figuur 6 (zie ook bijlage 5 voor de significanties en effecten). Wij concluderen dat DMM diepere leerstrategieën sterker bevordert bij leerlingen.

Figuur 6. *Gemiddelde scores op ‘diepere leerstrategie’ per conditie en meting*

4.5 Effecten op leerstofbeheersing

De effecten op leerstofbeheersing zijn geanalyseerd op vijf variabelen: 1) de leesbaarheid, 2) de aanmaak van takken en concepten, 3) de kwaliteit van de mindmap (de relevantie van concepten, de basiskwaliteit, de toegevoegde en de hiërarchische kwaliteit), 4) de herhaling van concepten en 5) het gebruik van afbeeldingen.

4.5.1 Effecten op leesbaarheid van de mindmap

De leesbaarheid van de mindmap is gemeten met drie variabelen: ‘tekst op tak’, ‘leesbaarheid begrippen’ en ‘splitsing aan einde van tak’. Deze variabelen presenteren wij hier samen, omdat ze alle 3 van invloed zijn op het maken van een leesbare mindmap en DMM deze variabelen functioneel ondersteunt: de software plaatst de tekst automatisch op een tak; de getypte tekst is altijd leesbaar en splitsingen kunnen alleen aan het einde van een tak worden gemaakt. In de controle conditie ontbreekt deze geautomatiseerde ondersteuning voor het maken van een leesbare mindmap. Daarom is onderzocht hoe groot de verschillen zijn tussen de controle groep en DMM op deze variabelen. De verwachting is dat DMM hierin per definitie optimaal scoort. Wij hebben gekozen om expliciet te toetsen of er significante verschillen met de controle groep ontstaan, zodat duidelijk wordt of de functionaliteiten van DMM echte meerwaarde bieden voor leesbaarheid ten opzichte van mindmappen op papier. Tabel 9 toont het overzicht van de gemiddelden en de significanties in de 3 metingen.
Tabel 9. Gemiddelden op de drie variabelen van leesbaarheid

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th></th>
<th>Controle groep</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
<td>RM</td>
<td>VM</td>
</tr>
<tr>
<td>Tekst op tak *</td>
<td>M</td>
<td>3,83</td>
<td>4,00</td>
<td>4,00</td>
</tr>
<tr>
<td>Leesbaarheid begrippen ** *** ***</td>
<td>M</td>
<td>3,85</td>
<td>3,99</td>
<td>3,99</td>
</tr>
<tr>
<td>Splitsing einde tak **</td>
<td>M</td>
<td>3,34</td>
<td>4,00</td>
<td>3,99</td>
</tr>
</tbody>
</table>

* significant verschil op factor tijd tussen metingen (p<0,01)
** significant verschil op factor conditie (p<0,1)
*** significant verschil op interactie effect tussen factor tijd en factor conditie (p<0,01)

Tekst op tak

Figuur 7 geeft de ontwikkeling weer van de variabele ‘tekst op tak’. Er is gemeten op een 4-puntsschaal, waarbij 4 staat voor ‘op alle takken staat de tekst op de tak’. Tijdens de voormeting (1) is door alle leerlingen een mindmap op papier gemaakt. In de na- en retentiemeting (2) en (3) werken de DMM leerlingen met de mindmap software die ervoor zorgt dat teksten automatisch op een tak geplaatst worden. Hierdoor scoren leerlingen in de DMM conditie optimaal op de variabele ‘tekst op tak’ in meting 2 en 3, zoals te zien is in figuur 7. Leerlingen in de controle conditie blijven op de variabele tekst op de tak’ gelijk scores. Alle leerlingen scoren significant hoger in nameting dan in voormeting (hoofdeffect tijd) De factor conditie en het interactie-effect tussen tijd en conditie zijn niet significant (zie bijlage 5), dus DMM biedt geen meerwaarde op deze variabele.

![Figuur 7. Score op de variabele ‘tekst op tak mindmap’](image1)

Leesbaarheid begrippen

Figuur 8 toont de scores per conditie en meting op de variabele ‘leesbaarheid begrippen’. Voor deze variabele geldt een 4 puntsschaal, waarbij 4 staat voor: ‘alle begrippen in de mindmap zijn leesbaar’. De voormeting mindmap is door alle leerlingen op papier gemaakt. Leerlingen uit de controle conditie scoren op de voormeting (1) hoger (M= 3,96) dan de DMM leerlingen (M= 3.85). De na- en retentiemeting (2 en 3) wordt respectievelijk op papier of digitaal gemaakt. Leerlingen in de experimentele conditie typen dan de begrippen in hun mindmap met behulp van het mindmap software. In de grafiek is zichtbaar dat leerlingen met hulp van DMM de optimale score halen (M= 4,00). Dit betekent dat de leesbaarheid optimaal is in de DMM mindmaps, terwijl leerlingen in de controle conditie minder goed scoren in na- en retentiemeting (M= 3,83 en M= 3.93). De verschillen tussen de condities, tussen de metingen en in scoreverloop zijn significant (zie bijlage 5).

![Figuur 8. Score op de variabele ‘leesbaarheid begrippen’](image2)
Splitsing aan einde van tak

Figuur 9 toont de scores per conditie en meting op de variabele ‘splitsing aan einde van tak’. Er wordt gescoord in een 4 puntsschaal, waarbij 4 staat voor: ‘alle splitsingen in de mindmap zijn aan het einde van een tak’. De software in DMM plaatst de splitsingen naar subtakken automatisch aan het einde van een tak. Wanneer een mindmap op papier gemaakt wordt, moeten leerlingen zelf de plaats van de splitsing bepalen. In de voormeting scoren DMM leerlingen lager (M= 3,34) dan de controle conditie (M= 3,78), maar dit verschil is niet significant. Wanneer de DMM leerlingen met de software werken in na- en retentiemeting wordt de optimale score behaald (M=4,00). Er zijn significante verschillen tussen de metingen en in het scoreverloop, maar de verschillen tussen de condities zijn niet significant (zie bijlage 5).

Figuur 9. Score op de variabele ‘splitsing aan einde van tak’

We kunnen concluderen dat DMM leerlingen optimaal ondersteunt bij het maken van een leesbare mindmap. Leerlingen in de DMM conditie scoren optimaal op de variabelen ‘tekst op tak, leesbaarheid begrippen en splitsing aan einde van een tak’. Er zijn significante verschillen met de controle conditie, maar deze verschillen zijn klein. Slechts enkele leerlingen in de papieren conditie blijven moeite blijven houden met maken van optimaal leesbare mindmap.

4.5.2 Effecten op aanmaak van takken en concepten

De productiviteit van mindmappen is gedefinieerd als: het aantal takken en concepten dat in de mindmap is opgenomen. In Tabel 10 staan de gemiddelden van deze variabele voor beide condities.

Tabel 10. Gemiddelden van de variabele ‘productiviteit’

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Productiviteit ,*</td>
<td>M 25,53</td>
<td>39,37</td>
</tr>
</tbody>
</table>

*significant verschil op factor tijd tussen metingen (p<0,01)
** significant verschil op factor conditie (p<0,05)

Figuur 10 toont dat leerlingen in de controle conditie in de drie metingen hoger scoren. De beginsituatie van de leerlingen in de twee condities is niet gelijk (M= 25,53 in DMM tegen 29,73 in de controle groep), waardoor ook gekeken moet worden naar de relatieve ontwikkeling van de leerlingen tijdens en na het leerarrangement. Tussen voor- en nameting (1 en 2) is de toename van het aantal concepten, dat leerlingen opnemen in hun mindmaps, vergelijkbaar. De score in DMM stijgt met 14,02 en de controleconditie stijgt met 15,22: een gemiddeld verschil van 1 concept per mindmap. In de retentiemeting (3) daalt het gemiddeld aantal begrippen in DMM minder sterk (-7) dan in de controle groep (-10). Het gemiddeld aantal begrippen neemt tussen voor- en retentiemeting in DMM toe met 7 begrippen. In de controleconditie is deze toename 5,6. De verschillen tussen de metingen (hoofdfactor tijd) en tussen de groepen (hoofdfactor conditie) zijn significant (zie bijlage 5). Het interactie-effect is niet significant, dus de meerwaarde van DMM voor productiviteit is op basis van deze data niet aangetoond. Overigens noemen de leerlingen zelf ‘het snel kunnen maken van takken’ als het grootste voordeel van digitaal mindmappen, blijkt uit een aantal gesprekken met kinderen.
Figuur 10. Score op de variabele ‘aantal begrippen per mindmap’

4.5.3 Effecten op relevantie, de basiskwaliteit, de toegevoegde kwaliteit en hiërarchische kwaliteit

De kwaliteit van de mindmap is op vier variabelen onderzocht (zie Tabel 4). Relevantie betreft de relatie van de gebruikte begrippen met het onderwijsthema. De basiskwaliteit gaat over het beheersen van de basisstof. De toegevoegde kwaliteit betreft de kennis die door leervragen en leeractiviteiten is ontwikkeld. De hiërarchische kwaliteit gaat over de relaties die leerlingen tussen de begrippen kunnen leggen. In Tabel 11 zijn de gemiddelden van deze vier variabelen opgenomen. Vervolgens worden in Figuur 12, 13 en 14 de resultaten toegelicht.

Tabel 11. Gemiddelden van de variabelen: normgestuurde, vraaggestuurde en hiërarchische kwaliteit

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Relevantie ,**</td>
<td>3,36</td>
<td>3,84</td>
</tr>
<tr>
<td>Basiskwaliteit ,,</td>
<td>1,18</td>
<td>1,63</td>
</tr>
<tr>
<td>Toegevoegde kwaliteit ,**</td>
<td>3,70</td>
<td>3,89</td>
</tr>
<tr>
<td>Hiërarchische kwaliteit ,*</td>
<td>2,63</td>
<td>3,21</td>
</tr>
</tbody>
</table>

s significant verschil op factor tijd tussen metingen ($p<0,01$)

** significant verschil op factor conditie ($p<0,01$)

*** significant verschil op interactie effect tussen factor tijd en factor conditie ($p<0,01$)

Relevante concepten

De mate van relevantie wordt vastgesteld middels het stroomdiagram in figuur 11. Daarbij is van belang om op te merken dat de expertmap niet exact gereproduceerd hoeft worden. De gehanteerde criteria zijn: de relevantie van het concept ten aanzien van het onderwijsthema en de logische ordening in relatie met het voorafgaand concept in de mindmap. Dit geldt zowel voor basisbegrippen als voor toegevoegde begrippen.

Figuur 11. Stroomschema vaststellen relevantie
Deze variabele is gescoord op een 4 puntschaal waarbij de volgende scores werden gehanteerd:

[1]= < 25% van de concepten relevant geplaatst;
[2]= 25-50% van de concepten relevant geplaatst;
[3]= 50-75% van de concepten relevant geplaatst;
[4]= meer dan 75% van de concepten relevant geplaatst.

Tabel 11 geeft een overzicht van de gemiddelde op de variabele ‘relevantie’. In figuur 12 is zichtbaar dat alle leerlingen significant hoger gaan scoren op de metingen (hoofdfactor tijd). Dit gebeurt eerder en sneller in de DMM groep, want het scoreverloop van de DMM (interactie effect) is significant hoger vergeleken met dat van de controle groep. Er is geen significant verschil geconstateerd tussen de groepen (hoofdfactor conditie) op de variabele relevantie (zie bijlage 5).

De basiskwaliteit van de mindmap

De basiskwaliteit wordt bepaald door de mate van overeenkomst met de expertmap. Deze variabele meet uitsluitend de aanwezigheid van de basisbegrippen in de toetsmindmap. De relevante plaatsing en mate van ordening van basisbegrippen wordt met andere variabelen gemeten (respectievelijk met ‘relevantie’ en ‘hiërarchische structuur’). De volgende categorieën zijn gehanteerd om deze kwaliteit te scoren:

[1]= < 25% van de basisbegrippen uit de expertmap benoemd;
[2]= 25-50% van de basisbegrippen uit de expertmap benoemd;
[3]= 50-75% van de basisbegrippen uit de expertmap benoemd;
[4]= meer dan 75% van de basisbegrippen uit de expertmap benoemd.

De leerlingen starten in DMM met een hogere beginsituatie (M= 1,18 tegen M= 1,09). De grafiek in Figuur 13 toont dat leerlingen uit de controlegroep beter in de nameting (2) scoren (M= 1,97) dan de leerlingen uit de DMM groep (M= 1,63). Het verschil is een toename van 0,88 in het gemiddelde van de controle groep tegen een toename van 0,45 in de DMM conditie. Bij de retentiemeting toont Figuur 13, dat de verschillen weer kleiner worden. Wanneer we de voormeting met de retentiemeting vergelijken, is de basiskwaliteit in DMM met 0,30 toegenomen en is de toename in de controle groep 0,61. De controle groep scoort dus beter op de basiskwaliteit en dit verschil is significant op alle factoren (zie bijlage 5).

De basiskwaliteit in DMM met 0,30 toegenomen en is de toename in de controle groep 0,61. De controle groep scoort dus beter op de basiskwaliteit en dit verschil is significant op alle factoren (zie bijlage 5).
De toegevoegde kwaliteit van de mindmap

Figuur 13 toont de ontwikkeling van de toegevoegde kwaliteit van de mindmap in de twee condities. Deze variabele is gescoord op een 4 puntschaal waarbij de volgende scores worden gehanteerd:
[1]= geen concepten toegevoegd;
[2]= 1-5 extra concepten toegevoegd;
[3]= 5 tot 9 nieuwe begrippen toegevoegd;

Opvallend is in beide condities dat in de voormeting (1) alle leerlingen hoger scoren op toegevoegde kwaliteit (M=3,78) vergeleken met de basiskwaliteit (M= 1,08). Wanneer we de condities vergelijken, zijn er geen significante verschillen. In figuur 14 zien we in de nameting (2) dat DMM in het scoreverloop de controle groep voorbij is gestreefd (M= 3,89 in DMM tegen M=3,83 in controle groep). In de retentiemeting (3) blijkt DMM vrijwel constant (-0,03) terwijl de controle groep onder het beginniveau van de voormeting daalt (-0,08). Dit verschil is significant (zie bijlage 5). DMM lijkt dus een sterker positief effect te hebben op de toegevoegde kwaliteit van de mindmap.

![Score op de variabele 'toegevoegde kwaliteit'](image)

Figuur 14. Score op de variabele ‘toegevoegde kwaliteit’

De hiërarchische kwaliteit van de mindmap

Het onderscheid tussen hoofd en bijzaken is in een mindmap zichtbaar in de hiërarchische structuur. Deze kwaliteit is onderdeel van de leerstofbeheersing en daarom opgenomen in het analyseinstrument. De variabele wordt gemeten op een 4 puntschaal met de volgende scores:

[1]=Willekeurige ordening van concepten in de takken- geen hiërarchische verbanden;
[2]=Hiërarchische verbanden op 2 niveaus: begrip + voorbeelden/ details (opsommingen);
[3]=Hiërarchische verbanden op 3 niveaus: Kernconcept+ afgeleid ordeningsconcept+ details;

Figuur 15 toont een significante toename in de hiërarchische structuur van de mindmaps in beide condities. De controle conditie scoort significant hoger in alle metingen, maar de verschillen blijven klein: het gemiddelde van DMM is in de nameting met 0,69 toegenomen tegen 0,55 in de controlegroep. In de retentiemeting nemen de verschillen weer wat af: vergeleken met de voormeting is het gemiddeld in DMM dan met 0,57 toegenomen en de controle groep met 0,48. Dit verschil in scoreverloop is echter niet significant (zie voor significanties bijlage 5). Op deze variabele blijkt mindmappen op papier hoger te scoren dan DMM.

![Score op variabele ‘hiërarchische kwaliteit’](image)

Figuur 15. Score op variabele ‘hiërarchische kwaliteit’
4.5.4 Effecten op herhaling van concepten

Wanneer leerlingen begrippen op meerdere plaatsen in de mindmap opnemen, hebben zij waarschijnlijk niet de meest optimale structuur gekozen om hun begrippen te ordenen. De mate van herhaling is derhalve ook een indicatie van de kwaliteit van een mindmap. De variabele herhaling van concepten is gemeten op een 4 puntsschaal, waarin de volgende scores worden gehanteerd:

[1] = meer dan 5 concepten herhaald;
[2] = 3-4 concepten herhaald;
[3] = 1-2 concepten herhaald;

Tabel 12. Gemiddelen van de variabele ‘herhaling concepten’

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Herhaling concepten *, **</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,30</td>
<td>3,06</td>
</tr>
</tbody>
</table>

*significant verschil op factor tijd tussen metingen (p<0,01)
** significant verschil op factor conditie (p<0,1)

In Tabel 12 valt op dat het aantal herhalingen in de controle groep sterker toeneemt (-0,40) dan in DMM (-0,14), maar dit verschil is niet significant (zie bijlage 5). Figuur 16 toont dat DMM eindigt op hetzelfde niveau als de voormeting (M=3,30) terwijl de controle conditie het begin niveau niet haalt. Het verschil tussen de groepen (hoofdfactor conditie) en tussen de metingen (hoofdfactor tijd) is significant.

Figuur 16. Score op de variabele ‘herhaling van begrippen’

4.5.5 Effecten op gebruik van afbeeldingen

Afbeeldingen zijn een essentieel onderdeel van een mindmap, omdat zij de associaties met de opgenomen begrippen versterken en bijdragen bij aan het onthouden van de inhouden. De kwaliteit van afbeeldingen is gemeten met de variabelen ‘aantal afbeeldingen’, ‘kwaliteit van afbeeldingen’ en ‘relevantie plaatsing afbeeldingen’.

Het aantal afbeeldingen is geteld in de mindmaps en daarna omgezet in een schaalscore, waarbij de volgende scores zijn gehanteerd:

[1] = 0-2 afbeeldingen;
[2] = 3-4 afbeeldingen;
[3] = 5-6 afbeeldingen;

De kwaliteit van de afbeelding is gescoord als:

[1] = <25% van afbeeldingen ondersteunt de betekenis van begrip;
[2] = 25-50% ondersteunt betekenis;
[3] = 50-75% ondersteunt betekenis;
De variabele ‘relevante plaatsing afbeeldingen’ is eveneens op een 4 puntsschaal gescoord met vergelijkbare percentages. Vervolgens is een gemiddelde berekend van de somscore van deze variabelen. In Tabel 13 worden de waarden voor de gemiddelden weergegeven:

Tabel 13. Gemiddelden van de variabele ‘kwaliteit afbeeldingen’

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Somscore kwaliteit afbeeldingen</td>
<td>M 2,39</td>
<td>2,36</td>
</tr>
</tbody>
</table>

De verschillen in gemiddelden op deze variabele, zoals zichtbaar in Tabel 13 en in Figuur 17, blijken in de statistische analyse niet significant te zijn (zie ook bijlage 5). Dat betekent dat geen conclusies getrokken kunnen worden over het effect van DMM of mindmappen op papier op de kwaliteit van afbeeldingen.

Figuur 17. Score op de variabele ‘kwaliteit afbeeldingen’

4.6 Samenvatting resultaten leerlingen

Er zijn aanwijzingen dat DMM leidt tot hogere motivatie en tot diepere leerstrategie bij leerlingen. De effecten op leerstofbeheersing zijn complex en roepen vragen op. Duidelijk is dat de leesbaarheid van de mindmap gebaat is bij DMM. Het aantal takken dat gemaakt wordt in een mindmap blijkt iets hoger te zijn in de papieren conditie. Begrippen in de digitale mindmaps zijn gemiddeld relevanter dan in de papieren conditie. Leerlingen in DMM blijken beter nieuwe informatie toe te kunnen voegen aan de basisstof, maar leerlingen in de controle conditie beheersen de basisstof iets beter. Het onderscheiden van hoofd- en bijzaken valt licht positief uit voor de controle groep, maar leerlingen herhalen minder begrippen in DMM. Over de kwaliteit van afbeeldingen kunnen geen uitspraken worden gedaan op basis van deze data. Samenvattend blijkt DMM bij te dragen aan de motivatie, diepe leerstrategie en een aantal aspecten van leerstofbeheersing van leerlingen.
5 Onderzoeksresultaten leerkrachten

In dit hoofdstuk wordt uiteengezet welk effect DMM heeft gehad op een aantal leerkrachtvariabelen. We schetsen kort eerste welke verwachtingen wij hadden (5.1) welke data zijn gebruikt (5.2) en presenteren dan de bevindingen op motivatie (5.3), de ontwerpcapaciteit (5.4), de implementatiecapaciteit (5.5) en de evaluatiecapaciteit (5.6) van de leerkrachten. Citaten van leerkrachten illustreren de persoonlijke bevindingen van de leerkrachten. De afsluitende paragraaf beschrijft de voorkeur van leerkrachten voor DMM of mindmappen op papier en de onderliggende argumentatie hiervoor (5.7).

5.1 Verwachtingen

Om de effecten van mindmapping (papier en digitaal) op de motivatie, ontwerp-, uitvoerings- en evaluatiecapaciteit vast te stellen zijn vier verwachtingen getoetst:

Met betrekking tot motivatie:
- Mindmappen bevordert de motivatie van leerkrachten omdat het de mogelijkheid biedt om diverse knelpunten rondom ontwerpen, begeleiden en toetsen in vraaggestuurd leren aanpakken. Ook zal de motivatie toenemen omdat leerlingen graag met mindmappen werken. Er wordt een sterker effect verwacht wordt van DMM ten opzichte van papieren mindmapping vanwege gebruiksvriendelijkheid en gebruiksmogelijkheden van de digitale variant.

Met betrekking tot ontwerpcapaciteit:
- Mindmapping bevordert de ontwerpcapaciteit. Door de kernbegrippen eerst indielineel en later gezamenlijk vast te leggen in een mindmap krijgen leraren beter overzicht op de doel en de invulling van het leerarrangement. Een vergelijking tussen digitaal en papier is voor deze variabele niet opgenomen in het onderzoeksontwerp, omdat van beide manieren van mindmappen gebruik is gemaakt tijdens het ontwerpproces.

Met betrekking tot uitvoeringscapaciteit:
- Mindmappen bevordert de uitvoeringscapaciteit bij leerkrachten, waarbij een sterker effect verwacht wordt van DMM ten opzichte van papieren mindmapping vanwege de gebruiksvriendelijkheid en de gebruiksmogelijkheden van de digitale variant.

Met betrekking tot evaluatiecapaciteit:
- Mindmappen bevordert de evaluatiecapaciteit bij leerkrachten. Een vergelijking tussen digitaal en papier is niet opgenomen in het onderzoeksontwerp, omdat voor het evalueren van de mindmaps geen effecten van de gebruiksmogelijkheden van DMM werden verwacht.

5.2 Gebruikte data en data-analyse

Leerkrachten hebben vooraf en na afloop van het onderzoek een vragenlijst ingevuld over mindmappen in vraaggestuurd leren (zie Bijlage 2). Voor de items in deze vragenlijst geldt de volgende schaalindeling:

[1] = volledig oneens;
[2] = oneens;
[3] = eens;

De kwalitatieve data uit de interviews, observaties en e-mails van de leerkrachten zijn uitgewerkt en gerangschikt volgens de vier leerkrachtvariabelen. Vanwege het kleine aantal leerkrachten (N=12) is
alleen gekeken naar gemiddelde scores in de vragenlijsten en is er geen analyse gemaakt van de significante. Uit de e-mails van de leerkrachten is een overzicht gemaakt van de geïnvesteerde tijd per leerkracht en per leerling. In dit hoofdstuk is gebruik gemaakt van citaten van leerkrachten, deze zijn in de tekst gecursiveerd.

5.3 Motivatie

Om de motivatie van de leerkrachten voor mindmappen in vraaggestuurd leren te meten zijn de variabelen ‘beleving’ en ‘mindmaps motiverend’ opgenomen in de leerkrachtvragenlijst. Deze variabelen onderzoeken respectievelijk, hoe leerkrachten het leerarrangement ervaren en in welke mate leerkrachten vinden dat mindmaps stimulerend zijn voor henzelf en voor de leerlingen. Tabel 14 geeft een overzicht van de gemiddelde scores in de categorie motivatie in de vragenlijst.

Tabel 14.
Gemiddelden van leerkracht variabelen ‘beleving’ en ‘mindmaps motiverend’.

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>Beleving leerkrachten</td>
<td>M</td>
<td>3,20</td>
</tr>
<tr>
<td>Mindmaps motiverend</td>
<td>M</td>
<td>2,71</td>
</tr>
</tbody>
</table>

In Figuur 18 staat de ontwikkeling van de beleving in de grafiek. Leerkrachten hadden van te voren hoge verwachtingen van de uitvoering van de leerarrangementen. Zij gaven aan dat zij in de vooromtelling hoge scores hadden gegeven op basis van de gewenste situatie. Na de uitvoering is de beleving van de leerkrachten in de controle groep heel licht gedaald (-0,03). In DMM is de beleving van de leerkrachten constant gebleven (0,00).

![Figuur 18. Score op de variabele ‘beleving’](image1.png)

Uit Figuur 19 blijkt dat leerkrachten in beide condities gemotiveerd zijn om met mindmappen in vraaggestuurd leren te werken (score boven 3 is “mee eens”). Wel geven leerkrachten aan dat zij de vooromtelling vooral vanuit een gewenste situatie hebben ingevuld, omdat zij nog geen ervaringen met mindmaps hadden. Er is een lichte stijging af te lezen van motivatie in de DMM conditie (+0,15) en een sterkere daling (-0,60) in de controle groep. De leerkrachten verklaren zelf dat zij een realistischer beeld hebben gekregen van de mate waarin mindmaps motiveren. Leraren in de DMM conditie bleven dus ongeveer even positief omdat DMM aan hun verwachtingen voldeed, maar de leerkrachten in de controle conditie stelden hun opvattingen naar beneden bij.

![Figuur 19. Score op de variabele ‘motiverend’](image2.png)
De interviews bevestigen het beeld dat de leerkrachten gemotiveerd gebleven zijn om verder te gaan werken met mindmaps in vraaggestuurd leren. Deze motivatie baseren leraren deels op de eigen ervaring in het voorbereiden en uitvoeren van het leerarrangement, maar deze wordt ook gevoed door het enthousiasme van de leerlingen:

‘De kinderen vinden het erg leuk om een mindmap te maken: ze zijn erg gemotiveerd.’

Enkele leerkrachten plaatsen wel kanttekeningen bij de motivatie van leerlingen voor (digitaal) mindmappen. Niet alle inzet van mindmaps in het onderwijs wordt automatisch enthousiast ontvangen door de leerlingen. De motivatie neemt af als de mindmap niet als leermiddel maar als leerproduct gebruikt wordt. Zo ontdekten de leerkrachten in het leerarrangement Gelderland dat leerlingen weerstand vertoonden, toen zij de opdracht kregen om de klassenmindmap individueel over te nemen:

‘De leerlingen gaven aan dat ze al een mindmap over Gelderland hadden gemaakt. Ze vonden deze opdracht niet leuk, want ze vonden deze herhaling niet zinvol.’

De leerkrachten besloten deze opdracht te laten vervallen, omdat deze niet functioneel noodzakelijk was voor de uitvoering van het leerarrangement. De leerkrachten besteedden namelijk al voldoende aandacht aan (de relaties tussen) de basisbegrippen door de klassenmindmap te gebruiken als referentiekader bij het bespreken van de leervragen. Vanaf het moment dat de focus weer gericht werd op de eigen leervragen, nam de motivatie van de kinderen weer toe volgens de leerkrachten. Het maken van een mindmap moet dus zinvol en betekenisvol voor de leerlingen blijven binnen het leerproces, om hun motivatie hoog te houden.

Een mindmap kan tijdens het vraaggestuurd leren door de leerlingen voor meerdere doelen worden gebruikt, bijvoorbeeld als hulpmiddel bij het formuleren van de onderzoeksvraag of voor het vastleggen van onderzoeksresultaten. Voor onderzoeksdoeleinden hebben de leerlingen in dit onderzoek weliswaar 3 toetsmindmaps gemaakt, maar normaal gesproken wordt alleen de voor- en nameting afgenomen als leraren de mindmap als evaluatie-instrument willen toepassen. Overigens vonden de leerlingen het maken van de diverse toetsmindmaps over het algemeen leuk om te doen. Pas bij de retentiemeting kregen leraren signalen dat sommige leerlingen niet meer zo gemotiveerd waren om over dit onderwerp een mindmap te maken.

5.4 Ontwerpcapotentie

Bij deze variabele heeft de mindmap de functie als ontwerpinstrument. Tijdens de voorbereidende workshops hebben de leerkrachten uitgebreid met elkaar gesproken over de opzet van de leerarrangementen en over de keuze van kernbegrippen voor de leerkrachtmindmap. Voor veel leerkrachten was het een eyeopener om te zien dat collega’s een geheel andere mindmap over het onderwerp hadden voorbereid, dan zij zelf:

‘Het uitwisselen van de mindmaps maakte mij duidelijk, dat je vaak je eigen invulling aan een onderwijsthema geeft, terwijl je nauwelijks bewust bent dat je collega dit heel anders kan zien.’

Alle leerkrachten vonden het gezamenlijk opbouwen van de leerkrachtmindmap een waardevolle activiteit. Eén leerkracht gaf zelfs aan:

‘... door de leerkracht mindmap ben ik dit keer minder gefocust geweest op de activiteiten, die wij altijd in plannen. Door de mindmap wist ik waar ik naar toe wilde en dat maakte de invulling van de activiteiten veel minder leidend.’

Een andere leerkracht gaf aan zich door de mindmap zekerder te voelen over de invulling van het leerarrangement, terwijl zij toch wel met enige spanning keken naar het leren vanuit leervragen:
‘Ik wist niet zo goed hoe het werken met eigen leervragen zou uitpakken, maar ik wist door de mindmap wel heel goed waar ik met de kinderen heen wilde en dat gaf mij vertrouwen.’

Ook werd door enkele leerkrachten genoemd dat het gezamenlijk voorbereiden met een mindmap leidde tot minder overlegtijd tijdens het leerarrangement:

‘Omdat we samen precies wisten wat we wilde bereiken, hoefden wij niet lang te overleggen over de voorbereiding van lessen.’

Leerkrachten vinden de mindmap een krachtig instrument om het leerarrangement voor te bereiden:

‘Doordat je zelf zo goed nagedacht hebt over de inhouden, houd je gemakkelijker overzicht.’

Digitaal mindmappen vonden leerkrachten tijdens het ontwerpen praktischer dan papier:

‘Op basis van onze eigen mindmaps konden we snel samen op het digibord de leerkrachtmindmap maken. Ik denk dat dit op papier niet zo gemakkelijk was geweest.’

5.5 Uitvoeringscompetentie

<table>
<thead>
<tr>
<th></th>
<th>Experimentele groep</th>
<th>Controle groep</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VM</td>
<td>NM</td>
</tr>
<tr>
<td>opvattingen leerkrachten</td>
<td>M 3,22</td>
<td>3,28</td>
</tr>
<tr>
<td>mindmap communicatief</td>
<td>M 2,71</td>
<td>2,86</td>
</tr>
<tr>
<td>begeleiden van leerprocessen</td>
<td>M 2,89</td>
<td>2,93</td>
</tr>
<tr>
<td>begeleiden van leervragen</td>
<td>M 2,43</td>
<td>2,57</td>
</tr>
</tbody>
</table>

Leerkrachten in DMM conditie zijn iets positiever gaan denken (+0,06) over vraaggestuurd leren als onderwijsvorm, dan de collega’s in de controle conditie (zie Figuur 19). Leerkrachten die werken met papieren mindmaps, zijn minder positief in de nameting (-0,29).

Figuur 20. Score op variabele ‘opvattingen’
Beide groepen leerkrachten zijn overwegend positief over de communicatieve functie van een mindmap (score hoger dan 3,00). In Figuur 21 is zichtbaar dat in DMM deze mening licht stijgt (+0,15), terwijl die in de controle conditie daalt (-0,60). De opvattingen van de beide condities op dit onderdeel benaderen elkaar in de nameting. Blijkbaar zijn leerkrachten in DMM sterker overtuigd geraakt van de communicatieve mogelijkheden van de digitale mindmap.

![Figuur 21. Score op de variabele 'communicatieve functie mindmap'](image)

Figuur 21. Score op de variabele ‘communicatieve functie mindmap’

Figuur 22 toont dat leerkrachten in DMM vrijwel gelijk blijven denken over de mogelijkheden om leerlingen te begeleiden in hun leerproces in vraaggestuurd leren (+0,04), terwijl in de controle conditie deze opvatting daalt (-0,20).

![Figuur 22. Score op de variabele 'begeleiden van leerprocessen'](image)

Figuur 22. Score op de variabele ‘begeleiden van leerprocessen’

Opvallend is dan dat leerkrachten in de controle conditie sterker overtuigd raken dat mindmapping hen helpt bij het begeleiden van leervragen (+0,40), dan hun DMM collega’s (+0,14). Dit is ook zichtbaar in de grafiek in figuur 23. Uit de interviews blijkt dat de variabele “begeleiden van leervragen” in de vragenlijst sterker geassocieerd wordt met leerkrachtvaardigheden als ‘doorvragen’ en ‘verwijzen naar informatiebronnen’ dan met werken met mindmaps.

![Figuur 23. Score op de variabele 'begeleiden van leervragen'](image)

Figuur 23. Score op de variabele ‘begeleiden van leervragen’

De leerkrachten vertellen in de interviews dat leerlingen in alle groepen snel leerden werken met de mindmap:
'De kinderen zien een voorbeeld [van een mindmap]en kunnen hier snel op anticiperen, ze staan open voor nieuwe informatie en verwerken deze heel snel.'

Het verwerken van de voorkennis via woordveld naar klassenmindmap vinden de leerkrachten krachtige werkvorm:

‘De leerlingen hebben zeer actief meegedacht, meegewerkt aan het clusteren van de brainstorm en het maken van de klassikale mindmap op het digibord.’

De klassenmindmap heeft de leerlingen geholpen zich te oriënteren op hun leervragen:

‘Met behulp van de klassenmindmap kwamen er onderwerpen aan bod, die niet voor iedereen oprechte voorkennis waren, maar waardoor kinderen wel op een spoor werden gezet om een leervraag in het eigen interessegebied te formuleren.’

Over het algemeen komen leerlingen in de groepen 7-8 vlot tot eigen leervragen met behulp van de klassenmindmap. In de groepen 5-6 was meer begeleiding van de leerkrachten nodig om tot leervragen te komen. Leerkrachten gebruikten dan de mindmap om de kinderen te ondersteunen bij het formuleren van leervragen:

‘Het hielp om de kinderen een tak te laten kiezen en ze daar een vraag over te laten bedenken.’

De klassenmindmap kon een bijdrage leveren aan de kwaliteit van de leervragen:

‘Kinderen maken hun leervraag veel concreter met behulp van de klassenmindmap. Ze gebruiken begrippen uit de mindmap om hun vraag specifieker te maken’.

Leerkrachten merkten wel dat het stellen van goede leervragen een ontwikkelproces is voor veel leerlingen. In de loop van het leerarrangement bleek dat sommige vragen moeilijk beantwoordbaar waren of weinig nieuwe kennis opleverden. Leerkrachten in alle groepen hebben veel energie gestoken in de begeleiding om tot goede leervragen te komen.

De klassenmindmap fungeerde in veel klassen als platform voor het uitwisselen van kennis. Leerlingen wisten door de mindmap welke leerlingen met welke leervragen bezig waren en met wie ze mogelijk konden samewerken:

‘Kinderen hadden zelf goed in de gaten welke leervragen gemakkelijk aan elkaar konden worden gekoppeld en bij takken deze vragen thuis hoorden.’

Daarnaast ontstond spontaan het gevoel bij de leerlingen dat zij samen aan het werk waren om de klassenmindmap verder vorm te geven, en gingen zij elkaar helpen:

‘Wanneer leerlingen zoeken naar antwoorden, komen ze natuurlijk heel veel tegen. Ook informatie waar ze niet specifiek op zoek naar zijn. Ze willen graag deze info delen met degene die hier een leervraag over hebben. Zo leren ze van elkaar, erg leuk om te zien.’

Leerkrachten hebben de overtuiging dat de mindmap bijdraagt aan het leerrendement:

‘Ik heb het idee dat het maken van de mindmap de kinderen zeker helpt om de stof beter te onthouden. Het biedt ze structuur en houvast en door er iedere keer op terug te grijpen, blijft het uitgangspunt heel duidelijk’

In de DMM conditie zag een leerkracht erg op tegen het werken met digitale mindmaps.:
‘... omdat uit ervaring is gebleken, dat mijn groep veel moeite heeft met werken op de computer.’

Deze leerkracht was aangenaam verrast dat de leerlingen gemakkelijk met de mindmap software konden werken.

‘Ik heb de kinderen, na een korte demonstratie, aan het werk gezet op (ieder een eigen) computer en bij alle kinderen ging dit in een keer goed!’

Andere leerkrachten vertelden dat leerlingen soms teleurgesteld waren, dat zij niet met digitale mindmaps mochten werken. De beschikbaarheid van voldoende computers vinden leerkrachten echter een randvoorwaarde voor DMM. Soms moest flink geschoven worden in de planning om de beschikbare computers over de groepen te verdelen, want ook in de controle conditie waren computers nodig voor het zoeken en verwerken van informatie.

Uit de interviews blijkt dat de uitvoering van het leerarrangement een dubbel leertraject is geweest voor veel leerkrachten: enerzijds hebben zij leren werken met een mindmap in de klas en anderzijds zijn veel leerkrachten voor het eerst met leervragen van de kinderen aan de slag gegaan. Over het algemeen zijn leerkrachten positief over de uitvoering van het leerarrangement. Wel gaven zij aan, dat er meer tijd en ervaring nodig is (dan één leerarrangement) om deze manier van werken goed in de vingers te krijgen. Een leerkracht verwoordde dit zo:

‘Ik heb naar mijn gevoel er nog niet alles uitgehaald wat er inzat, maar dat kan eigenlijk ook nog niet. Dit is ook nog maar de eerste stap in een leerproces.’

5.6 Evaluatiecompetentie

Deze variabele meet de ervaringen van leerkrachten met de mindmap als toetsinstrument. Na afloop van het leerarrangement hebben alle leerkrachten gedurende een dagdeel de mindmaps van hun leerlingen vergeleken. Ze hebben daarbij gebruik gemaakt van een vereenvoudigd analyse instrument dat de aandacht richtte op: het toepassen van de juiste mindmap regels, de structuur van de mindmap, de juistheid van de inhoud en de omvang van de mindmap. Dit instrument bleek in de praktijk wel richting te geven aan de analyse, maar ook arbeidsintensief te zijn.

Leerkrachten vonden het over het algemeen interessant en belangrijk om de mindmaps met elkaar te vergelijken. In veel mindmaps van kinderen was duidelijk een ontwikkeling te zien tussen de metingen.

‘Het verschil in kwaliteit is in een eerste oogopslag wel heel duidelijk: Kinderen die niet verder komen dan een hoofdtak met daaraan een heleboel eenzijdige vertakkingen, maar ook kinderen met hoofdtakken, subtakken, nog meer subtakken enzovoorts.’

Het was echter niet altijd eenvoudig om een kwalitatief oordeel te geven over de mindmaps. Soms zagen leerkrachten verrassende resultaten van leerlingen. In andere gevallen had de leerkracht de indruk dat de prestatie in de mindmap tegenviel:

‘Hij stelt continu vragen, geeft vaak goede antwoorden en is altijd actief betrokken maar dat zie ik niet terug in zijn mindmap.’

De meeste leerkrachten zouden in de toekomst vaker gebruik willen maken van een mindmap als toetsinstrument, al dan niet aangevuld met andere vormen van toetsing.

Tussen de twee condities zijn geen grote verschillen genoemd met betrekking tot de beoordeling van de mindmaps. Enkele leerkrachten in de DMM conditie gaven er de voorkeur aan om de digitale mindmaps te printen voor de beoordeling. Deze leerkrachten vertelden dat ze dit deden, omdat de
eerste meting ook op papier was gemaakt en zij zo de drie metingen fysiek naast elkaar konden leggen. Andere leerkrachten maakte gebruik van de software om de digitale mindmaps te bekijken en ervoeren dit als praktisch en duurzaam.

5.7 Waaraan geven leerkrachten de voorkeur?

Op de vraag, welke vorm van mindmappen de voorkeur heeft, kiezen 11 van de 12 leerkrachten voor digitaal mindmappen. De volgende argumenten worden hiervoor genoemd:

- Je kunt de mindmap op het digibord gemakkelijk maken en aanvullen;
- Je kunt in de digitale mindmap ook de vragen en links koppelen aan de begrippen op de takken;
- Een papieren mindmap is mooi maar ook aardig arbeidintensief, daarom zou ik de volgende keer voor digitaal kiezen;
- De digitale mindmap kun je steeds opslaan. Als ik nu terugkijk zie ik hoe de mindmap gegroeid is afgelopen weken;
- Wij willen de digitale mindmap ook gebruiken als voorbereiding op thema’s Dan kunnen we meteen de lessen en links naar informatiebronnen koppelen aan de mindmap. Dat scheelt veel werk als we het thema weer willen gaan uitvoeren.

Een aantal leerkrachten zien echter ook voordelen in mindmappen op papier:

- Het grote voordeel van werken op papier vind ik, dat de kinderen zonder afleiding langere tijd aan het werk zijn de mindmap;
- Voor de kinderen, die graag tekenen en zich creatief willen uiten, lijkt het mij goed om ook te mindmappen op papier;
- Ik zie voor leerlingen in beide vormen van mindmappen voordelen, maar als leerkracht kies ik voor digitaal mindmappen.
6 De efficiëntie en educatieve waarde

Dit hoofdstuk beschrijft welke waarde DMM voor het onderwijs heeft in termen van efficiëntie (6.1) en educatieve waarde (6.2). Per variabele wordt beschreven, hoe de benodigde data berekend worden, en vervolgens worden de betreffende formules ingevuld met deze gegevens en de conclusies gepresenteerd.

6.1 Efficiëntie van DMM en papieren mindmapping

Om efficiëntie van de leerarrangementen te meten zijn de factoren motivatie, leerstrategie en tijdsinvestering van leerlingen en leerkrachten berekend: Eerst is de somscore op motivatie uit de nameting van leerling-vragenlijst berekend in SPSS. Daarna is dit omgerekend in percentages. In Tabel 16 staat hoe op basis van deze score tot een cijfer voor efficiëntie is gekomen.

Tabel 16. Berekening motivatie voor efficiëntie formule

<table>
<thead>
<tr>
<th>Variabele</th>
<th>Conditie</th>
<th>Somscore</th>
<th>%</th>
<th>Cijfer formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivatie</td>
<td>papieren</td>
<td>61,4</td>
<td>73,1%</td>
<td>7,3</td>
</tr>
<tr>
<td></td>
<td>DMM</td>
<td>64,2</td>
<td>76,4%</td>
<td>7,6</td>
</tr>
</tbody>
</table>

Voor de factor diepere leerstrategie is op dezelfde wijze een cijfer berekend (Tabel 17).

Tabel 17. Berekening diepere leerstrategie voor efficiëntie formule

<table>
<thead>
<tr>
<th>Variabele</th>
<th>Conditie</th>
<th>Somscore</th>
<th>%</th>
<th>Cijfer formule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diepere leerstrategie</td>
<td>papieren</td>
<td>14,9</td>
<td>62,2%</td>
<td>6,2</td>
</tr>
<tr>
<td></td>
<td>DMM</td>
<td>15,8</td>
<td>66,0%</td>
<td>6,6</td>
</tr>
</tbody>
</table>

De leerkrachten hebben opgegeven hoeveel tijd zij en hun leerlingen hebben besteed aan het leerarrangement. Van deze data is een gemiddelde tijdsinvestering per week berekend per conditie voor leerlingen en leerkrachten (zie Tabel 18).

Tabel 18. Berekening tijdsinvestering leerlingen en leerkrachten voor efficiëntie formule

<table>
<thead>
<tr>
<th>Variabele</th>
<th>Onderzoeksconditie</th>
<th>Gemiddeld in minuten per week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijdsinvestering</td>
<td>papieren</td>
<td>200</td>
</tr>
<tr>
<td>leerlingen</td>
<td>DMM</td>
<td>180</td>
</tr>
<tr>
<td>Tijdsinvestering</td>
<td>papieren</td>
<td>250</td>
</tr>
<tr>
<td>leerkrachten</td>
<td>DMM</td>
<td>250</td>
</tr>
</tbody>
</table>

Met deze gegevens is de volgende formule voor efficiëntie ingevuld:

\[
\text{Efficiëntie} = \frac{\text{motivatie} + \text{leerstrategie}}{10} \times \text{tijd leerkracht + tijd leerling}
\]
Uit onderstaande resultaten, zichtbaar in Tabel 19, blijkt dat DMM iets efficiënter is dan mindmappen op papier.

Tabel 19.
Vergelijking efficiëntie DMM- papieren conditie

<table>
<thead>
<tr>
<th>Onderzoeksconditie</th>
<th>Efficiëntie</th>
</tr>
</thead>
<tbody>
<tr>
<td>papieren conditie</td>
<td>0,30</td>
</tr>
<tr>
<td>DMM conditie</td>
<td>0,33</td>
</tr>
</tbody>
</table>

6.2 Educatieve waarde van DMM en papieren mindmapping: de Power Indicator

Om de Power indicator te bereken wordt de onderstaande formule toegepast:

Power indicator = intrinsieke motivatie * leerstrategie * efficiëntie

Zoals blijkt uit Tabel 20, is de Power indicator hoger in de DMM conditie. Wij leiden hieruit af, dat DMM krachtiger is dan mindmappen op papier als educatief instrument om vraaggestuurd leren te ondersteunen.

Tabel 20.
Vergelijking Power indicator DMM- papieren conditie

<table>
<thead>
<tr>
<th>Onderzoeksconditie</th>
<th>Power indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>papieren conditie</td>
<td>13,58</td>
</tr>
<tr>
<td>DMM conditie</td>
<td>16,55</td>
</tr>
</tbody>
</table>
7 Conclusies en discussie

Dit hoofdstuk geeft eerst een samenvatting van de onderzoeksfragen en resultaten voor leerlingen en leerkrachten (7.1). De onderzoeksgerichte reflectie (7.2) geeft een beschouwing van de beperkingen van dit onderzoek. Paragraaf 7.3 beschrijft de praktische implicaties om met DMM aan de slag te kunnen. Het hoofdstuk en deze rapportage besluit met enkele aspecten van DMM die vragen om nader uitgediept te worden in vervolgonderzoek (7.4).

7.1 Conclusies

In dit onderzoek hebben 12 leerkrachten samen met 271 leerlingen, verdeeld over twee basisscholen, gewerkt met vier vraaggestuurde leerarrangementen. In elke leerarrangement werd zowel met digitaal mindmappen als met mindmappen op papier gewerkt. Alle leerarrangementen zijn ontworpen, begeleid en geëvalueerd door de leerkrachten met behulp van mindmaps. Door middel van diverse onderzoeksgerichte instrumenten is data over leerlingen en leerkrachten verzameld voor het beantwoorden van de volgende hoofdvraag en vier deelvragen:

Wat is de waarde van digitale mindmapping (DMM) in vraaggestuurd leren voor leerlingen en leerkrachten?

1. Wat zijn de effecten van DMM op de intrinsieke motivatie, de leerstrategie en leerstofbeheersing van leerlingen in vergelijking met papieren mindmapping?
2. Op welke wijze ondersteunt DMM de leerkracht bij het ontwerpen, begeleiden en evalueren van vraaggestuurd leren?
3. Hoe efficiënt is DMM?
4. Wat is de educatieve waarde van DMM?

Uit dit onderzoek blijkt dat:

1. Bij leerlingen:
 - DMM de intrinsieke motivatie verhoogt;
 - DMM de gebruikte leerstrategieën verbetert;

 Ten aanzien van de leerstofbeheersing zijn de resultaten minder eenduidig:
 - In DMM is de leesbaarheid van mindmaps optimaal;
 - mindmappen op papier is productiever bij het maken van taken en begrippen;
 - DMM bevordert de relevantie van begrippen in de mindmaps beter;
 - mindmappen op papier versterkt de basiskwaliteit in de mindmaps beter;
 - DMM vergroot de toegevoegde kwaliteit in de mindmaps meer;
 - mindmappen op papier toont meer hiërarchische kwaliteit in de mindmaps.
 - In DMM worden minder begrippen herhaald;

2. Leerkrachten vinden dat:
 - beide vormen van mindmappen een waardevolle bijdrage leveren aan het bij het ontwerpen van vraaggestuurd leren;
 - beide vormen van mindmappen het overzicht versterken op de leerstof en de focus richt op doelen i.p.v. activiteiten;
 - beide vormen van mindmappen krachtige instrument zijn voor het begeleiden en evalueren van het leerproces van leerlingen;
 - DMM de voorkeur heeft om in de klas te gebruiken op grond van de efficiëntie en de gebruiksmogelijkheden.

3. Qua efficiëntie:
 - efficiënter is dan mindmappen op papier.

4. De educatieve waarde:
 - hoger ligt bij DMM dan bij papieren mindmapping.

Samenvattend: DMM draagt bij aan de betekenisvolle inzet van ICT in een sociaal constructivistische leeromgeving, waarbij zowel het leerrendement als het leerplezier wordt verhoogd.
7.2 Onderzoeksmatige reflectie

Het was de bedoeling om in dit onderzoek alle functionaliteiten van digitaal mindmappen in te zetten in de DMM conditie. In de praktijk bleek dit nog te hoog gegrepen, omdat de mindmap software voor veel leerkrachten nieuw was en nog niet volledig werd beheerst. In de meeste klassen is daarom vooral gebruik gemaakt van de basisfunctionaliteiten: het maken en aanpassen van takken in mindmaps. Notities en links op takken zijn niet in alle klassen gebruikt en ook bleek uit observaties, dat niet alle leerlingen in de DMM conditie geïnstrueerd waren in het gebruik van afbeeldingen. Dit houdt in dat het effect van DMM in dit onderzoek vooral afkomstig is van het gebruik van de basisfunctionaliteiten. De toegevoegde waarde van andere functionaliteiten, zoals het invoegen van afbeeldingen, notities, links, submindmaps, etc., zal in toekomstig onderzoek moeten worden vastgesteld.

Een mindmap als onderzoeksinstrument blijkt een rijk middel te zijn, maar de analyse is complex. Het is mogelijk om veel verschillende variabelen binnen een mindmap te onderzoeken. Deze variabelen geven indicaties van de ontwikkeling van leerstofbeheersing rondom een onderwerp. Hoe deze variabelen parametrisch het beste vastgesteld kunnen worden en in welke mate de verschillende variabelen meewegen in de kwalificatie van de leerstofbeheersing, roept nog veel vragen op. Zo blijkt in dit onderzoek dat leerlingen relatief laag te scoren op de variabele ‘beheersing van de basisstof’. In de nameting mindmaps van leerlingen is gemiddeld 50% van de basisbegrippen uit de expertmap aangetroffen, maar de uitbreiding van de basisstof is daarentegen aanzienlijk. Nader onderzoek is nodig om vast te stellen, wat dit precies betekent voor de mate van leerstofbeheersing van de leerling. Is beheersing van de basisstof doorslaggevend, of zijn andere variabelen, zoals de verrijkingssstof en de complexiteit in structuur betere indicatoren voor de leeropbrengst?

In dit onderzoek zijn de efficiëntie en de Power indicator van de leerarrangementen berekend met behulp van de tijdsinvestering van leerlingen en leerkrachten. Deze meting van de tijdsinvestering is niet erg exact geweest. De bedoeling was, dat leerkrachten zelf deze tijdsinvestering zouden bijhouden en dit wekelijks via een mailtje zouden doorgeven. In enkele gevallen hebben leerkrachten dit nauwgezet gedaan, maar het bleek voor veel leerkrachten toch lastig om dit exact bij te houden. Bovendien bleek dat leerkrachten de tijdsinvestering voor het leerarrangement op verschillende manieren hebben opgevat. ‘Wat hoort precies bij de voorbereidingsactiviteiten? Is dat ook de potaarde regelen voor een experiment met planten of is dat een website opzoeken voor een leerling met een leervraag?’ Tenslotte geeft de hoeveelheid geïnvesteerde tijd weinig informatie over de kwalitatieve besteding van deze tijd. Meer ervaren leerkrachten kunnen wellicht in minder tijd dezelfde resultaten boeken in vergelijking met starters, die zelf nog lerende zijn.

De meting van de factoren motivatie en leerstrategie zijn daarentegen gebaseerd op gevalideerde vragenlijsten en zijn daarnaast statistisch getoetst op betrouwbaarheid. Deze factoren vinden wij daarom betekenisvoller voor de educatieve waarde van het leerarrangement, dan de factor efficiëntie. Om toch een indicatie te kunnen geven van de educatieve waarde (en omdat in de formule de factor efficiëntie zowel boven als onder de streep staat en dus tegen elkaar wegvalt), is gekozen om de resultaten voor de Power indicator op te nemen in dit verslag.

7.3 Praktische implicaties

DMM geeft een sterke impuls aan het gebruik van computers in de school. Dit heeft wel consequenties voor de digitale infrastructuur van de school. Op de betrokken scholen leken een aantal randvoorwaarden goed geregeld te hebben: er was een gemotiveerde en deskundige ICT-er en de hard- en software werd door een professionele organisatie geïnstalleerd en beheerd. Toch bleek tijdens de uitvoering dat het aantal beschikbare computers nauwelijks berekend was op deze intensivering van het computergebruik. Wanneer scholen DMM willen gaan inzetten in hun vraaggestuurd onderwijs zal een goede inventarisatie van de beschikbare middelen vooraf nodig zijn, anders zal de beschikbare hardware de beperkende factor worden voor DMM.
7.4 Vervolgonderzoek

De manier waarop de klassenmindmap in deze leerarrangementen is gebruikt, kenmerkt zich vooral als ‘mindmap-out’. Deze term wordt gebruikt als een mindmap als brainstorm instrument wordt gebruikt, waarbij nieuwe gedachten en associaties in creatief proces worden vastgelegd (Buzan & Buzan, 2007). Wellicht dat deze inzet van de mindmap de hoge scores verklaart op de uitbreiding van de basisstof, omdat bij ‘mindmap-out’ de nadruk ligt op het uitwisselen en uitbreiden van kennis. De mindmap kan ook gebruikt worden om nieuwe informatie te leren en in het geheugen te slaan. Dit wordt ‘mindmap-in’ genoemd. Gezien de relatief lage score op de beheersing van de basisstof is het zinvol om te onderzoeken op welke wijze ‘mindmap-in’ kan bijdragen om de kennis van de basisbegrippen te borgen in vraaggestuurd onderwijs. Daarbij zou onderzocht kunnen worden of het gebruik van afbeeldingen en het verschil tussen werken op papier of digitaal belangrijke factoren zijn voor het versterken van het leerrendement.

Het gebruik van DMM door de leerkrachten in het basisonderwijs staat nog in de kinderschoenen. Het blijkt voor hen een complexe taak om mindmaps te vergelijken en te analyseren. Meer onderzoek is nodig om te bepalen welke kenmerken van kwaliteit een leerkracht in het basisonderwijs kan gebruiken om efficiënt en effectief mindmaps beoordelen.
8 Literatuur

Bijlage 1: De onderzoeksprocedure

- **Draagvlakbijeenkomst:** voorafgaande aan de start van het onderzoek zijn bijkomsten georganiseerd met (een deel van) de participerende basisschoolleerkrachten op beide scholen. Het doel van deze bijeenkomsten is om het eigenaarschap voor het onderzoek te versterken bij alle deelnemers. Op basis van een korte presentatie van de onderzoekers kunnen leerkrachten vragen stellen, suggesties doen en toelichting geven op hun ervaringen uit de praktijk. Zo kan de uitvoering van het onderzoek optimaal afgestemd worden op de klassenpraktijk. Deze afstemming is noodzakelijk om te borgen dat de uitvoering van het onderzoek voor zowel de school als de onderzoekers zinvol en effectief is. Op basis van de input van deze bijeenkomsten is besloten om de voorbereiding op de leerarrangementen per school te organiseren in deelclusters: de leerkrachten van de groepen 5-6 en de leerkrachten van de groepen 7-8;

- **Workshop 1 (introductie):** het onderzoek is op elke school gestart met een aparte introductiebijeenkomst voor elk cluster. Hierin is de onderzoeksopzet nader toegelicht. DMM als middel om leerstof in kaart brengen, te ontwerpen en leerlingen te begeleiden is samen nader verkend. Ook is geoeuf met het maken van een mindmap om te borgen dat de belangrijkste spelregels bij de constructie ervan goed worden beheerst. Aan het einde van de introductiebijeenkomst zijn de thema’s vastgesteld, die de basis vormen voor de te ontwerpen leerarrangementen. Voor de ontwerpwkshop is gevraagd om alvast materiaal te verzamelen over deze thema’s. Tevens is de leerkrachten gevraagd hun leerlingen te laten oefenen met (digitaal) mindmappen, voordat het onderzoek daadwerkelijk zou starten;

- **Voormeting leerkrachten:** tijdens de introductiebijeenkomsten zijn bij de leerkrachten vragenlijsten afgenomen als voormeting over hun handelingsbereidheid, implementatiecompetentie en ontwerpcompetentie. Tevens zijn opvattingen en ervaringen met wereldoriëntatie, vraaggestuurd leren, leerstofborging en (D)MM bevraagd (zie Bijlage 1);

- **Toewijzing condities:** na de introductiebijeenkomst is het onderzoek opgezet volgens een quasi-experimenteel pretest-posttest-controlgroep onderzoeksdesign, waarbij de controle groep werkt met papieren mindmapping en de experimentele groep met digitaal mindmapping;

- **Workshop 2 (ontwerpen):** twee weken na de introductiebijeenkomst is per school, per cluster een ontwerpwkshop van een dagdeel georganiseerd, waarin het ontwerp van het leerarrangementen centraal staan. Leerkrachten hebben voorafgaand aan de workshop de belangrijkste leerstof van het gekozen thema in een mindmap gezet. Tijdens de bijeenkomst is verkend welke verschillen en overeenkomsten de individuele mindmaps hadden, om vervolgens een gezamenlijke mindmap te construeren over het thema. De opbrengsten van de workshops zijn collectieve leerkracht mindmaps, die als basis dienen voor dit onderzoek. Omdat leerkrachten uit beide condities samen betrokken waren bij het ontwerp van het leerarrangement, is in deze bijeenkomst uitdrukkelijk aangegeven welke overeenkomsten en verschillen de leerkrachten in acht moesten nemen tijdens het werken in een van de twee onderzoekscondities (zie Bijlage 2);

- **Voormeting leerlingen:** voorafgaand aan de start van het leerarrangement is bij de leerlingen een voormeting uitgevoerd op intrinsieke motivatie (vragenlijst), leerstrategie (vragenlijst) en leerstofbeheersing (maken van een mindmap) (zie Bijlage 3);

- **Uitvoeren leerarrangement:** vervolgens starten de lesactiviteiten in zowel de controle conditie (leerkrachten en leerlingen werken met papieren mindmaps) als de experimentele conditie (leerkrachten en leerlingen werken met DMM). De leerarrangementen zijn in een periode van drie tot zes weken uitgevoerd. Gedurende de looptijd hebben leerkrachten wekelijks per email opvallende zaken rondom het mindmapping en het vraaggestuurd leren gerapporteerd. Per cluster is twee keer door de onderzoekers geobserveerd, waarbij enerzijds aandacht was voor normgerichte leerstofborging: hoe en in hoeverre werken leerkracht en leerlingen middels papieren dan wel via digitale mindmapping aan het behalen van gestelde leerdoelen zoals
geëxplieciteerd in de door de leerkrachten ontworpen mindmap; anderzijds op individuele leerstofborging: hoe en in hoeverre leggen leerkracht en leerlingen de verbinding tussen de klassikale leerdoelen van de mindmap met verrijking en verdieping van de leerstof via de eigen leervragen van de leerlingen. Om zicht te krijgen op de ontwikkeling van de klassikale mindmap in DMM is gewerkt met versiebeheer. Voor het meten van efficiency hebben de leerkrachten de tijd bijgehouden die zijzelf en leerlingen hebben besteed aan het werken met de mindmap;

- *Nameting leerlingen*: na afronding van de lessen is bij de leerlingen een nameting uitgevoerd op dezelfde variabelen als in de voormeting (zie Bijlage 3);

- *Retentiemeting*: om inzicht in de lange termijn effecten van DMM bij leerlingen te krijgen is hen 5-6 weken na afronding van de lessenserie nog een keer worden gevraagd een mindmap te maken over het thema;

- *Instructie en beoordeling mindmaps door leerkrachten*: om te bepalen in welke mate de mindmaps (uit voor-, na- en retentiemeting) leerkrachten zicht geeft op de leerstofontwikkeling van hun leerlingen, beoordelen zij een dagdeel lang deze mindmaps. Vooraf hebben de leerkrachten een gezamenlijke instructie gekregen over het scoringsinstrument, dat zij bij deze beoordeling kunnen gebruiken.

- *Nameting leerkrachten*: na afloop van het scoren van de mindmaps vullen de leerkrachten opnieuw de vragenlijst in, die ook bij de voormeting gebruikt is (zie Bijlage 1). Door middel van een semigestuctureerd interview met elke leerkracht, is inzicht verkregen in het verloop van het leerarrangement, de effecten van (D)MM op vraagsturing en leerstofborging en op de persoonlijke beleving en wensen ten aanzien van (D)MM;

- *Data-analyse en rapportage*: na de afronding van de dataverzameling zijn de data geanalyseerd en resultaten in een rapportage gepresenteerd aan de betrokken scholen.
Bijlage 2: De leerkracht vragenlijst

Categorie 1: Beginsituatie

Wil je hieronder aangeven in hoeverre de volgende stellingen passen bij jouw situatie als leerkracht?

- Ik heb ervaring met het ontwerpen van thematisch wereldoriëntatie onderwijs
- Ik heb ervaring met het begeleiden van thematisch wereldoriëntatie onderwijs
- Ik laat leerlingen in mijn onderwijs leren met eigen leervragen
- Ik heb een mindmap gebruikt in mijn onderwijs
- Ik heb gewerkt met het programma “I-mindmap”

Categorie 2: Beleving

De volgende stellingen hebben betrekking op jouw beleving van het werken met thematisch wereldoriëntatie onderwijs en het werken met leervragen van de leerlingen. Geef aan wat bij jouw beleving als leerkracht past.

- Ik ontwerp van mijn thematisch onderwijs graag zelf
- Een onderwijsthema inspireert mij om mijzelf inhoudelijk te verdiepen in het onderwerp
- Ik zie het als een uitdaging om leerlingen nieuwsgierig te maken naar het onderwerp
- Ik vind het prettig om samen met de leerlingen hun voorkennis te verkennen
- Ik zoek graag uit welke mogelijkheden tot leren het onderwijsthema biedt aan de leerlingen
- Ik wordt graag verrast als leerlingen zelf leervragen gaan bedenken over het onderwerp
- Ik geniet van de uitdaging om de verschillende leervragen van de leerlingen te begeleiden
- Ik voel voldoening als leerlingen door hun eigen leervragen tot nieuwe kennis en inzichten komen

Categorie 3: Vaardigheden

De volgende stellingen hebben betrekking op jouw vaardigheden als leerkracht.

Wil je aangeven in hoeverre de volgende stellingen passen bij jouw vaardigheden?

- Ik bepaal, voor een onderwijsthema start, de belangrijkste kernconcepten/begrippen voor het onderwerp (met behulp van de kerndoelen)
- Ik vind het gemakkelijk om de inhoudelijke kennis en vaardigheden te definiëren die de leerlingen moeten/kunnen ontwikkelen (basis- verdieping) ten aanzien van het onderwerp
- Ik stimuleer leerlingen leervragen over het onderwerp te bedenken
- Ik kan de persoonlijke leervragen van leerlingen verbinden met de kernconcepten van het onderwijsthema
- Ik gebruik de kernconcepten van het onderwijsthema om leerlingen gericht te helpen te zoeken
- Ik laat de leerlingen nadenken over mogelijke oplossingen of antwoorden op hun vragen
- Ik vind het gemakkelijk om de leerlingen onderling inzichten en kennis te laten delen
- Ik bevorder de werkhouing en het taakbewustzijn van leerlingen
- Ik vind het moeilijk om de begeleiding van de leervragen efficiënt te organiseren in het onderwijsthema
- Ik kan vaststellen welke kennis en leervragen leerlingen hebben ontwikkeld aan de hand van hun leervragen
- Ik reflecteer met de leerlingen op hun kennisontwikkeling- conceptuele ontwikkeling
- Ik krijg gemakkelijk zicht op de vorderingen/leeropbrengsten van de individuele leerlingen
- Ik kan aangeven welke leerlingen de basisdoelen binnen het onderwijsthema hebben behaald
Categorie 4: Opvattingen

De volgende stellingen hebben betrekking op jouw opvattingen als leerkracht over jouw onderwijs. Geef alsjeblieft aan in hoeverre de stellingen overeen komen met jouw opvattingen:

- In mijn thematisch onderwijs zoek ik aansluiting bij de voorkennis en de leef- en beleveniswereld van de leerlingen
- Ik vind de kernconcepten van een onderwijsthema vaak geschikt als doelen voor het onderwijsthema
- De doelen van het onderwijsthema moeten vooraf duidelijk zijn voor de leerlingen
- De samenhang in het onderwijsarrangement moet zichtbaar zijn voor de leerlingen
- Het is nodig om classikale instructie te geven over de kernconcepten van het onderwijsthema
- Het is noodzakelijk de voorkennis/beginsituatie van individuele leerlingen ten aanzien van het onderwijsthema in kaart te brengen
- Het is voor de leerlingen gemakkelijk om te leren vanuit de leervragen die zij zelf stellen
- Als leerkracht moet ik ervoor zorgen dat leerlingen steeds zelfstandiger leren werken
- Ik vind het belangrijk voor de leerlingen dat zij hun kennis en inzichten onderling uitwisselen in mijn klas
- Ik vind het belangrijk de conceptuele ontwikkeling van de individuele leerlingen te kunnen volgen/meten

Categorie 5: Mindmap Inhoudelijk

De volgende stellingen hebben betrekking op de inhoudelijke functie die een mindmap kan hebben in het onderwijs:

- Een mindmap helpt mij om zicht te krijgen op de inhoud en onderlinge verbanden van het onderwerp
- Een mindmap schept een gezamenlijk referentiekader over het onderwerp voor de kinderen
- Een mindmap helpt mij om de samenhang tussen kernconcepten van het onderwijsthema aan te bieden
- Een mindmap helpt mij om leervragen van kinderen te verbinden met kernconcepten/begrippen van het onderwijsthema
- Een mindmap helpt mij om leerlingen te wijzen op de samenhang met eerder aangeboden informatie/kennis
- Een mindmap helpt mij leerlingen te wijzen op het verband tussen de gevonden informatie en de leervraag
- Een mindmap helpt kinderen om hun onderzoeksresultaten zichtbaar te verwerken
- Door de mindmap zien leerlingen welke nieuwe kennis zij verworven hebben

Categorie 6: Mindmap Leerstrategisch

De volgende stellingen hebben betrekking op de leerstrategische functie van een mindmap:

- De begrippen in een mindmap helpen mij een leervraag van een leerling te verbinden met het onderwijsthema
- Een mindmap helpt leerlingen om na te denken over oplossingsstrategieën / hoe de leervraag beantwoord kan worden
- De begrippen in een mindmap helpen mij om zoekgedrag van leerlingen te begeleiden
- In de mindmap kunnen leerlingen gemakkelijk verwijzen naar de resultaten van hun zoekactie
- Een mindmap helpt mij het zelfsturend gedrag van leerlingen te bevorderen
• Een mindmap helpt mij om de leerlingen zelfstandiger te laten werken tijdens het onderwijsthema
• Een mindmap helpt mij om de taakverdeling binnen een groepje leerlingen te monitoren en aan te sturen
• In de mindmap kunnen leerlingen eenvoudig de nieuw verworven kennis toevoegen
• Een mindmap helpt de leerlingen begrippen te ordenen en te herschikken op basis van de overeenkomsten en de verschillen
• Een mindmap helpt leerlingen gericht te leren voor een toets over de lesstof

Categorie 7: Mindmap Motiverend

De volgende stellingen hebben betrekking op manier waarop een mindmap kan motiveren:

• Een mindmap helpt mij leerlingen enthousiast te maken voor het onderwerp
• Een mindmap stimuleert de leerlingen om eigen leervragen te stellen
• Een mindmap stimuleert de leerlingen om hun kennis steeds verder uit te breiden en te verdiepen
• Een mindmap stimuleert leerlingen om verbanden tussen begrippen te onderzoeken en uit te werken
• Een mindmap geeft de leerlingen inzicht in hun eigen vorderingen zodat hun taakbewustzijn toeneemt
• Een mindmap geeft leerlingen houvast over wat zij willen leren

Categorie 8: Mindmap Communicatief

De volgende stellingen hebben betrekking op de communicatieve functie die de mindmap kan vervullen in het onderwijs:

• Een mindmap stimuleert het gesprek in de klas over de betekenis van kernconcepten, details en voorbeelden
• Een mindmap helpt mij om de leerlingen overzicht te geven op de relaties tussen kernconcepten, details en voorbeelden
• Een mindmap stimuleert het stellen van leervragen door de kinderen
• In de mindmap kunnen de leerlingen de opbrengst van hun leervraag zichtbaar maken
• Een mindmap stimuleert de leerlingen om kennis en inzichten binnen groepjes uit te wisselen
• Een mindmap stimuleert de leerlingen om hun kennis en inzichten met andere groepjes in de klas te delen
• Een mindmap geeft de leerlingen zicht op hun vorderingen en leeropbrengsten
• Door een mindmap heb ik overzicht over de vorderingen/leeropbrengsten van de individuele leerlingen
Bijlage 3: Verschillen tussen de twee condities (digitaal versus papier)

<table>
<thead>
<tr>
<th>Fase van de les</th>
<th>Functie</th>
<th>digitaal</th>
<th>papier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voorbereiding</td>
<td>Vaststellen van leerdoelen en stofinhoud van thema: Leerkrachtmindmap</td>
<td>Gelijk</td>
<td>gelijk</td>
</tr>
<tr>
<td>Introductie</td>
<td>Introduceren van begrippen tekst en beeld: woordveld maken</td>
<td>Op digibord woorden noteren</td>
<td>Op digibord woorden noteren</td>
</tr>
<tr>
<td></td>
<td>Vastleggen beginstuktuur in pretest: Voormeting-mindmap</td>
<td>Op papier</td>
<td>Op papier</td>
</tr>
<tr>
<td>Verkennen van thema</td>
<td>Ordenen van begrippen op basis van overeenkomsten: clusteren van woordveld</td>
<td>Clusteren op digibord in digibord software</td>
<td>Clusteren op digibord in digibord software</td>
</tr>
<tr>
<td></td>
<td>Hiërarchische en dwarsverbanden aangeven</td>
<td>Mindmap opbouwen op digibord: maken in I-mindmap</td>
<td>Mindmap opbouwen op digibord: tekenen in digibord-software</td>
</tr>
<tr>
<td>Formuleren leervragen</td>
<td>Oriëntatie op leervragen Leervragen en ideeën initiëren</td>
<td>Startpunt- vergelijk voormeting-mindmap leerling met klassenmindmap: Wat wist je nog niet? Waar wil je nog meer over weten?</td>
<td>Startpunt- vergelijk voormeting-mindmap leerling met klassenmindmap: Wat wist je nog niet? Waar wil je nog meer over weten?</td>
</tr>
<tr>
<td></td>
<td>Leervragen afstemmen op kernconcepten, details en voorbeelden: Klassenmindmap</td>
<td>Zichtbaar maken in I-mindmap op digibord-koppeling door opnemen leervragen als notities</td>
<td>Zichtbaar maken op getekende klassenmindmap op digibord (vragen nummeren?)</td>
</tr>
<tr>
<td>Werken aan leervragen</td>
<td>Verdeling onderwerpen en taken aan de hand van mindmap</td>
<td>Zichtbaar maken in I-mindmap op digibord-</td>
<td>Zichtbaar maken op getekende mindmap op digibord of prikbord</td>
</tr>
<tr>
<td></td>
<td>Begeleiden van leervragen door deze te relateren aan (geheel en delen in) mindmap</td>
<td>Proces leervraag zichtbaar maken met vragenformulier als notitie in I-mindmap op digibord</td>
<td>Proces leervraag zichtbaar maken met vragenformulier</td>
</tr>
<tr>
<td></td>
<td>Aansturen zoekstrategieën op basis van zoektermen uit mindmap</td>
<td>Mindmap koppelen aan vragen. Gebruik vragenformulier Links verzamelen op takken in I-mindmap</td>
<td>Mindmap koppelen aan vragen. Gebruik vragenformulier Links verzamelen (in Word document?)</td>
</tr>
<tr>
<td>Vordering en taakverdeling monitoren binnen groepjes</td>
<td>Leerlingen verwijzen naar mindmap- Vordingen verwerken in I-mindmap: Vragenformulieren ingevuld als Notities op takken afbeeldingen nieuwe (sub)taakken Sub-mindmaps</td>
<td>Leerlingen verwijzen naar mindmap Vordingen verwerken in papieren mindmap: Nieuwe takken Afbeeldingen Getekende sub-mindmaps Afbeeldingen ingevulde vragenformulieren</td>
<td>Leerlingen verwijzen naar mindmap Vordingen verwerken in papieren mindmap: Nieuwe takken Afbeeldingen Getekende sub-mindmaps Afbeeldingen ingevulde vragenformulieren</td>
</tr>
</tbody>
</table>
| Uitwisselen van kennis binnen en tussen groepjes leerlingen | De ontwikkelde kennis klassikaal en groepsverband uitwisselen aan de hand van de gevormde mindmaps:
Welke kennis is ontwikkeld door de leervraag?
Hoe maken we die voor elkaar zichtbaar?
Medium: I-mindmap | De ontwikkelde kennis klassikaal en groepsverband uitwisselen aan de hand van de gevormde mindmaps:
Welke kennis is ontwikkeld door de leervraag?
Hoe maken we die voor elkaar zichtbaar?
Medium: papieren mindmap |
|---|---|---|
| Presenteren | Uitwisselen van kennis in de klas | Diverse vormen van presentatie (*functionaliteiten in I-mindmap*)
- Notities
- Links
- Afbeeldingen
- Sub-mindmaps
- Interactieve presentatie
- | Mindmap op papier op prikbord (of als foto op digibord) |
| Evalueren reflecteren | Leeropbrengst vastleggen in nameting | **Digitaal in I-mindmap**
Op papier |
| Reflecteren op kennisontwikkeling door vergelijking pre- en posttest | Vergelijken: Voormeting-mindmap met nameting mindmap en klassenmindmap | Vergelijken: Voormeting-mindmap met nameting mindmap en klassenmindmap |
| Retentiemeting | **Digitaal in I-mindmap**
Op papier |
Bijlage 4: De leerling vragenlijst

Voor elke vraag is aangegeven, hoe de vraagstelling is in de voormeting (VM) en in de nameting (NM). In dit overzicht staan de vragen per categorie gerangschikt. In de leerling-vragenlijst zijn de vragen willekeurig in volgorde afgenomen.

Ervaren competentie

1 VM: Ik ben goed op school.
 NM: Ik ben goed in het werken met een mindmap.
2 VM: Ik denk, dat ik vergeleken met andere leerlingen goed ben op school.
 NM: Ik denk, dat ik vergeleken met andere leerlingen goed ben in het werken met een mindmap.
3 VM: Op school ben ik in de meeste vakken goed.
 NM: Op school ben ik goed in het werken met een mindmap.
4 VM: Ik ben tevreden over mijn prestaties op school.
 NM: Ik ben tevreden over mijn mindmaps op school.

Interesse

5 VM: Ik vind de lessen op school leuk.
 NM: Ik vind mindmappen op school leuk.
6 VM: Ik vind de lessen op school interessant.
 NM: Ik vind mindmappen op school interessant.
7 VM: De lessen op school zijn leuk om te doen.
 NM: Mindmappen op school is leuk om te doen.
8 VM: Ik vind de lessen op school saai.
 NM: Ik vind mindmappen op school saai.
9 VM: Tijdens de lessen op school denk ik er vaak aan, hoe leuk het is.
 NM: Tijdens het mindmappen in de lessen denk ik vaak hoe leuk het is.
10 VM: Ik kan mijn aandacht er goed bijhouden tijdens de lessen op school.
 NM: Ik kan mijn aandacht tijdens het mindmappen er goed bijhouden.

Ervaren keuze

11 VM: Ik kan zelf bepalen hoe ik opdrachten voor school maak.
 NM: Ik kan zelf bepalen hoe ik een mindmap gebruik, als ik opdrachten voor school maak.
12 VM: Ik kan kiezen op school, hoe ik aan een opdracht kan werken.
 NM: Ik kan kiezen op school, hoe ik met een mindmap aan een opdracht kan werken.
13 VM: Tijdens het maken van de opdrachten voor school kan ik zelf bepalen hoe ik het doe.
 NM: Tijdens het maken van de opdrachten voor school kan ik zelf bepalen hoe ik een mindmap hierbij gebruik.
14 VM: Ik mag op school zelf beslissen, hoe ik een opdracht aanpak.
 NM: Ik mag op school zelf beslissen, hoe ik een mindmap gebruik bij opdrachten.

Druk

15 VM: Ik ben vaak nerveus op school.
 NM: Ik ben vaak nerveus, als ik werk aan een mindmap.
16 VM: Ik ben vaak zenuwachtig op school.
 NM: Ik ben vaak zenuwachtig, als ik werk met een mindmap op school.
17 VM: Ik ben vaak bang, dat ik het niet goed doe tijdens de lessen op school.
 NM: Ik ben vaak bang, dat ik het niet goed doe tijdens het mindmappen.
18 VM: Tijdens de lessen op school voel ik me vaak onder druk staan.
 NM: Ik voel druk, als ik werk aan een mindmap.
19 VM: Op school voel ik me vaak op mijn gemak.
 NM: Ik voel me bij het werken aan een mindmap op mijn gemak.
Inzet
20 VM: Ik doe mijn best op school.
NM: Ik doe mijn best als ik een mindmap maak.
21 VM: Ik vind het belangrijk om goed te presteren op school.
NM: Ik vind het belangrijk om een goede mindmap te maken.
22 VM: Ik doe mijn best op school.
NM: Ik doe mijn best als ik een mindmap maak.
23 VM: Ik steek veel energie in school.
NM: Ik steek veel energie in het maken van een mindmap.

Oppervlakkige leerstrategie
24 VM: Op school maak ik opdrachten net zo vaak, totdat ik ze goed doe.
NM: Op school maak ik een mindmap net zo vaak, totdat deze goed genoeg is.
25 VM: Als de meester/juf extra werk opgeeft, probeer ik dit altijd te doen.
NM: Als de meester/juf een extra aanwijzing geeft voor het maken van een mindmap, probeer ik dit altijd te doen.
26 VM: Ik doe geen extra dingen voor school, als dat niet nodig is.
NM: Ik werk niet extra hard aan een mindmap, als dat niet nodig is.
27 VM: Als ik geen toets krijg, hoef ik iets niet te leren.
NM: Als het werken aan de mindmap niet wordt getoetst, hoef ik er niks van te leren.
28 VM: Ik vind het niet erg als ik een opdracht op school niet snap, als ik het antwoord maar goed heb.
NM: Ik vind het niet erg als ik de inhoud van een mindmap niet snap, als ik de mindmap maar goed heb.
29 VM: Op school bestudeer ik alleen de opdrachten, die ik moet doen.
NM: Op school werk ik alleen aan een mindmap bij de opdrachten, die ik moet doen.

Diepe leerstrategie
30 VM: In mijn vrije tijd zoek ik extra informatie op over onderwerpen, die we in de lessen op school hebben besproken.
NM: In mijn vrije tijd zoek ik extra informatie op, die ik kan gebruiken voor het maken van de mindmap op school.
31 VM: Ik vind de meeste nieuwe onderwerpen op school interessant.
NM: Ik vind het interessant om nieuwe onderwerpen in mijn mindmap op te nemen.
32 VM: Ik wil graag extra tijd besteden om meer te weten over nieuwe onderwerpen op school.
NM: Ik wil graag extra tijd besteden om nieuwe onderwerpen op school in een mindmap te zetten.
33 VM: Ik vind de lessen op school leerzaam.
NM: Ik vind het werken met een mindmap op school leerzaam.
34 VM: Ik stel mezelf vragen over onderwerpen, die tijdens de lessen op school zijn besproken, om te testen of ik het snap.
NM: Ik stel mezelf vragen over een mindmap, die tijdens de lessen op school is gemaakt, om te testen of ik het snap.
35 VM: Tijdens een les op school ben ik pas tevreden, als ik het helemaal snap.
NM: Tijdens het werken met een mindmap op school ben ik pas tevreden, als ik de mindmap helemaal snap.
Bijlage 5: Tabellen F-toetsen, significanties en effecten per variabele

<table>
<thead>
<tr>
<th>variabele</th>
<th>factor</th>
<th>F</th>
<th>α = significantie</th>
<th>η² = effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ervaringen</td>
<td>tijd</td>
<td>1,754</td>
<td>0,187</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>6,636</td>
<td>0,011</td>
<td>0,026</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>11,870</td>
<td>0,001</td>
<td>0,045</td>
</tr>
<tr>
<td>Interesse</td>
<td>tijd</td>
<td>49,315</td>
<td>0,000</td>
<td>0,164</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>7,579</td>
<td>0,006</td>
<td>0,029</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>7,841</td>
<td>0,006</td>
<td>0,030</td>
</tr>
<tr>
<td>Keuze</td>
<td>tijd</td>
<td>4,721</td>
<td>0,031</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,007</td>
<td>0,933</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>1,824</td>
<td>0,178</td>
<td>0,007</td>
</tr>
<tr>
<td>Druk</td>
<td>tijd</td>
<td>38,331</td>
<td>0,000</td>
<td>0,132</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,612</td>
<td>0,435</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>0,065</td>
<td>0,798</td>
<td>0,000</td>
</tr>
<tr>
<td>Inzet</td>
<td>tijd</td>
<td>21,360</td>
<td>0,000</td>
<td>0,078</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>1,824</td>
<td>0,178</td>
<td>0,007</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>0,814</td>
<td>0,368</td>
<td>0,003</td>
</tr>
<tr>
<td>Somscore motivatie</td>
<td>tijd</td>
<td>21,609</td>
<td>0,000</td>
<td>0,079</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>6,137</td>
<td>0,014</td>
<td>0,024</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>4,393</td>
<td>0,037</td>
<td>0,017</td>
</tr>
<tr>
<td>Diepere leerstrategie</td>
<td>tijd</td>
<td>0,616</td>
<td>0,433</td>
<td>0,002</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>1,659</td>
<td>0,199</td>
<td>0,022</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>5,590</td>
<td>0,019</td>
<td>0,022</td>
</tr>
<tr>
<td>Leesbaarheid</td>
<td>tijd</td>
<td>5,098</td>
<td>0,007</td>
<td>0,040</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>2,687</td>
<td>0,102</td>
<td>0,011</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>11,945</td>
<td>0,000</td>
<td>0,089</td>
</tr>
<tr>
<td>variabele</td>
<td>factor</td>
<td>F</td>
<td>α significantie</td>
<td>η^2 = effect</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------</td>
<td>-----</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Tekst op tak</td>
<td>tijd</td>
<td>4,901</td>
<td>0,008</td>
<td>0,038</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,261</td>
<td>0,610</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>2,858</td>
<td>0,059</td>
<td>0,023</td>
</tr>
<tr>
<td>Splitsing aan eind van tak</td>
<td>tijd</td>
<td>19,607</td>
<td>0,000</td>
<td>0,138</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,300</td>
<td>0,584</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>17,878</td>
<td>0,000</td>
<td>0,127</td>
</tr>
<tr>
<td>Productiviteit</td>
<td>tijd</td>
<td>1,134E2</td>
<td>0,000</td>
<td>0,483</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>2726,196</td>
<td>0,034</td>
<td>0,018</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>1,578</td>
<td>0,209</td>
<td>0,013</td>
</tr>
<tr>
<td>Relevantie</td>
<td>tijd</td>
<td>32,535</td>
<td>0,000</td>
<td>0,211</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,907</td>
<td>0,342</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>4,668</td>
<td>0,010</td>
<td>0,037</td>
</tr>
<tr>
<td>Basiskwaliteit</td>
<td>tijd</td>
<td>1,185E2</td>
<td>0,000</td>
<td>0,493</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>8,589</td>
<td>0,004</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>13,514</td>
<td>0,000</td>
<td>0,100</td>
</tr>
<tr>
<td>Toegevoegde kwaliteit</td>
<td>tijd</td>
<td>4,606</td>
<td>0,011</td>
<td>0,036</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,001</td>
<td>0,980</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>4,596</td>
<td>0,011</td>
<td>0,036</td>
</tr>
<tr>
<td>Hiërarchische kwaliteit</td>
<td>tijd</td>
<td>77,077</td>
<td>0,000</td>
<td>0,387</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>8,792</td>
<td>0,003</td>
<td>0,035</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>1,597</td>
<td>0,205</td>
<td>0,013</td>
</tr>
<tr>
<td>Herhaling concepten</td>
<td>tijd</td>
<td>9,098</td>
<td>0,000</td>
<td>0,069</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>2,910</td>
<td>0,089</td>
<td>0,012</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>0,746</td>
<td>0,475</td>
<td>0,006</td>
</tr>
<tr>
<td>variabele</td>
<td>factor</td>
<td>F</td>
<td>α= significantie</td>
<td>η²= effect</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Afbeeldingen</td>
<td>tijd</td>
<td>0,164</td>
<td>0,849</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>conditie</td>
<td>0,309</td>
<td>0,579</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>tijd*conditie</td>
<td>0,085</td>
<td>0,919</td>
<td>0,000</td>
</tr>
</tbody>
</table>